Skip to main content
Log in

Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

The effect of intrarenal tissue pressure, which accompanies osmotic diuresis, ureteral occlusion, applied pelvic pressure or elevated renal venous pressure, on intrarenal resistance to flow was investigated in anesthetized dogs.

Resistance of muscle-type precapillary vessels (pre- and postglomerular arterioles included) decreased with increasing tissue pressure. The decrease of flow resistance was directly related to decrease of transmural pressure difference in this vascular segment. The model behaviour which best describes the observed results is that of vascular smooth muscle reaction to changes in tangential wall tension as opposed to the behaviour of a purely elastic system. Mean transmural pressure difference of the precapillary vascular segment, at which smooth muscle contraction commences, was found to be 30–35 mm Hg.

Intrarenal venous resistance increased when intrarenal tissue pressure was elevated. However, at normal BP ranges, this increase in venous resistance does not exceed precapillary dilation, so that only constancy or a net increase in total renal blood flow occured. Blood flow oscillations after sudden decrease of intrarenal pressure could be invariably abolished by papaverine.

The results suggest that the observed intrarenal resistance changes are caused by vascular smooth muscle reactions to altered wall tension and that the increase in total renal blood flow during osmotic diuresis is not a specific effect of osmotically active substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.) 28, 220 (1902).

    Google Scholar 

  2. Brun, C., C. Crone, H. G. Davidsen, J. Fabricius, N. A. Lassen, A. Tybjaerg Hansen, and O. Munck: Renal interstitial pressure in normal and in anuric man: Based on wedged renal vein pressure. Proc. Soc. exp. Biol. (N.Y.) 91, 199 (1956).

    Google Scholar 

  3. Bülbring, E.: Correlation between membrane potential, spike discharges and tension in smooth muscle. J. Physiol. (Lond.) 128, 200 (1955).

    Google Scholar 

  4. Deetjen, P., u. H. Sonnenberg: PAH-Transport im proximalen Konvolut des Warmblüternephrons. Pflügers Arch. ges. Physiol. 278, 48 (1963).

    Google Scholar 

  5. Forster, R. P., and J. P. Maes: Effects of experimental neurogenic hypertensin on renal blood flow and glomerular filtration rates in intact denervated kidneys of unanesthetized rabbits with adrenal glands demedullated. Amer. J. Physiol. 150, 534 (1947).

    Google Scholar 

  6. Gottschalk, C. W.: A comparative study of renal interstitial pressure. Amer. J. Physiol. 169, 180 (1952).

    Google Scholar 

  7. ——, and M. Mylle: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Amer. J. Physiol. 185, 430 (1956).

    Google Scholar 

  8. —— —— Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Amer. J. Physiol. 189, 323 (1957).

    Google Scholar 

  9. Grupp, G., H. Heimpel u. K. Hierholzer: Über die Autoregulation der Nierendurchblutung. Pflügers Arch. ges. Physiol. 269, 149 (1959).

    Google Scholar 

  10. Haddy, F. J., J. Scott, M. Fleishman, and D. Emanuel: Effect of change in renal venous pressure upon renal vascular resistance, urine and lymph flow. Amer. J. Physiol. 195, 95 (1958).

    Google Scholar 

  11. Henne, G., u. K. Thurau: Die Mehrdurchblutung der Niere bei Steigerung des intrarenalen Gewebsdruckes. Pflügers Arch. ges. Physiol. 278, 46 (1963).

    Google Scholar 

  12. Hinshaw, L. B., S. B. Day, and C. H. Carlson: Tissue pressure as a causal factor in the autoregulation of blood flow in the isolated perfused kidney. Amer. J. Physiol. 197, 309 (1959).

    Google Scholar 

  13. ——, and N. K. Thuong: Pre- and postglomerular resistance changes in the isolated perfused kidney. Amer. J. Physiol. 199, 923 (1960).

    Google Scholar 

  14. Khouri, E., and D. E. Gregg: Miniature electromagnetic flow meter applicable to coronary arteries. J. appl. Physiol. 18, 224 (1963).

    Google Scholar 

  15. Kill, F., and K. Aukland: Renal concentration mechanism and hemodynamics at increased ureteral pressure during osmotic and saline diuresis. Scand. J. clin. Lab. Invest. 13, 276 (1961).

    Google Scholar 

  16. Kolin, A.: Electromagnetic recording flow meter. Amer. J. Physiol. 119, 355 (1937).

    Google Scholar 

  17. Kramer, K., K. Thurau u. P. Deetjen: Hämodynamik des Nierenmarks: I. Mitteilung. Pflügers Arch. ges. Physiol. 270, 251 (1960).

    Google Scholar 

  18. Malvin, R. L., W. S. Wilde, and L. P. Sullivan: Localisation of nephron transport by stop flow analysis. Amer. J. Physiol. 194, 135 (1958).

    Google Scholar 

  19. Miles, B. E., and H. E. de Wardener: Intrarenal pressure. J. Physiol. (Lond.) 123, 131 (1954).

    Google Scholar 

  20. Ochwadt, B.: Zur Selbststeuerung des Nierenkreislaufes. PflÜgers Arch. ges. Physiol. 262, 207 (1956).

    Google Scholar 

  21. Peart W. S.: Renin and Hypertensin. Ergebn. Physiol. 50, 409 (1959).

    Google Scholar 

  22. Schirmeister, J., L. Schmidt u. H. D. Söling: Die renale Extraktion versch. Clearance-Subst. beim Hund während maximal erhöhten Ureterdruck. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 237, 473 (1959).

    Google Scholar 

  23. Selkurt, E. E.: Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4, 541 (1951).

    Google Scholar 

  24. —— Der Nierenkreislauf. Klin. Wschr. 33, 359 (1955).

    Google Scholar 

  25. —— Effect of ureteral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol. 205, 286 (1963).

    Google Scholar 

  26. ——, and M. P. Spencer: Influence of graded arterial pressure decrement on renal clearance of creatinine, PAH and sodium. Amer. J. Physiol. 159, 369 (1949).

    Google Scholar 

  27. Semple, S. J. G., and H. E. de Wardener: Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circulat. Res. 7, 643 (1959).

    Google Scholar 

  28. Shipley, R. E., and R. S. Study: Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Amer. J. Physiol. 167, 676 (1951).

    Google Scholar 

  29. Swann, H. G.: In: Renal Function. Third Conference Josiah Macy jr. Foundation, 1952.

  30. Thurau, K., P. Deetjen u. K. Kramer: Hämodynamik des Nierenmarkes. II. Mitteilung. Pflügers Arch. ges. Physiol. 270, 270 (1960).

    Google Scholar 

  31. ——, u. K. Kramer: Weitere Untersuchungen zur myogenen Natur der Autoregulation des Nierenkreislaufes. Pflügers Arch. ges. Physiol. 269, 77 (1959).

    Google Scholar 

  32. —— —— u. H. Brechtelsbauer: Die Reaktionsweise der glatten Muskulatur der Nierengefäße auf Dehnungsreize und ihre Bedeutung für die Autoregulation des Nierenkreislaufes. Pflügers Arch. ges. Physiol. 268, 188 (1959).

    Google Scholar 

  33. ——, u. E. Wober: Zur Lokalisation der autoregulativen Widerstandsänderungen in der Niere. Pflügers Arch. ges. Physiol. 274, 553 (1962).

    Google Scholar 

  34. Ullrich, K., B. Schmidt-Nielsen, R. O'Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, and M. Mylle: Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol. 204, 527 (1963).

    Google Scholar 

  35. Waugh, W. H., and R. G. Shanks: Cause of genuine autoregulation of the renal circulation. Circulat. Res. 8, 871 (1960).

    Google Scholar 

  36. Wetterer, E.: Eine neue Methode zur Registrierung der Blutströmungsgeschwindigkeit am uneröffneten Gefäß. Z. Biol. 98, 26 (1937).

    Google Scholar 

  37. Winton, F. R.: Hydrostatic pressure affecting the flow of urine and blood in the kidney. Harvey Lect. 47 (1951/52).

  38. Wirz, H.: Druckmessungen in Kapillaren und Tubuli der Niere. Helv. physiol. pharmacol. Acta 13, 42 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 7 Textabbildungen

Mit Unterstützung der Deutschen Forschungsgemeinschaft und des U. S. Department of the Army, European Research Office.

Stipendiat der Deutschen Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurau, K., Henne, G. Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere. Pflügers Archiv 279, 156–177 (1964). https://doi.org/10.1007/BF00412776

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00412776

Navigation