Skip to main content
Log in

Untersuchungen zur Photophosphorylierung bei Rhodospirillum molischianum und Rhodospirillum rubrum

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

Die Thylakoide aus Rhodospirillum rubrum und Rhodospirillum molischianum werden nach Homogenisation der Zellen mit Ultraschall durch fraktionierte Zentrifugation isoliert. An diese Membranstrukturen ist das System der Photophosphorylierung gebunden. Die Aktivität dieses Systems in Abhängigkeit vom Redoxpotential des Mediums wird untersucht. Die stärkste Bindung anorganischen Phosphates wird unter Edelgasatmosphäre bei Zusatz von Spuren eines Elektronendonators (0,07 μmol Succinat je Ansatz) beobachtet. Die cyclische Photophosphorylierung wird einerseits durch Sauerstoff und oxydierende Verbindungen wie K3Fe(CN)6 anderseits durch „Überreduktion” mittels reduzierter Redoxverbindungen wie 2,6-Dichlorphenolindophenol oder Phenazinmethosulfat (beide reduziert durch Ascorbat) unter Wasserstoffatmosphäre gehemmt. Die Sauerstoffhemmung kann durch reduziertes Phenazinmethosulfat zu 50% aufgehoben werden. Antimycin A blockiert die lichtabhängige Phosphorylierung; 2,4-Dinitrophenol dagegen hemmt kaum. Die zellfreien Systeme beider Arten zeigen die gleiche Abhängigkeit vom Redoxpotential obwohl R. rubrum wesentlich sauerstofftoleranter ist als R. molischianum und auch durch oxydative Phosphorylierung im Dunkeln ATP bilden kann. Die Befunde sprechen für eine Unabhängigkeit der cyclischen Photophosphorylierung von der Atmungskette und für eine starke Übereinstimmung im Aufbau der Elektronentransportsysteme für die cyclische Photophosphorylierung bei R. rubrum und R. molischianum.

Summary

The isolated thylakoide-structures (chromatophores) of Rhodospirillum molischianum and Rhodospirillum rubrum are investigated with regard to activity of cyclic, light induced phosphorylation. A high activity of the photochemical apparatus needs an optimal external oxidation-reduction potential. Over-oxidation by oxygen or K3[Fe[CN)6] inhibit just as much as over-reduction by hydrogen and N-methyl phenazonium methosulfate or 2,6-dichlorphenol-indophenole both reduced with ascorbate. The highest activity is observed in hydrogen atmosphere without an electron-donator system or in helium with traces (0,07 μmol) of succinate. The inhibitoryeffect of oxygen can partly be compensated by reduced PMS. The photochemical apparatus of R. molischianum and R. rubrum react nearly in the same way on changes of the external oxidation-reduction potential and both systems are strongly inhibited by antimycin A but not by low concentrations of 2,4-dinitrophenole. R. molischianum is a strict anaerobic organism and can grow only in the light and under low oxygen partialpressure. In comparison with it R. rubrum is more oxygen-tolerant. The strain can grow under conditions of aerobic dark metabolism. The present results together with those of other investigations provide strong evidence for the conclusion that the systems of cyclic photophosphorylation in both organisms have the same composition and are relatively independent from the respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Arnold, W., and R. K. Clayton: The first step in photosynthesis. Proc. nat. Acad. Sci. (Wash.) 46, 769 (1960).

    Google Scholar 

  • Arnon, D. I.: Conversion of light into chemical energy in photosynthesis. Nature (Lond.) 184, 10 (1959).

    Google Scholar 

  • — M. Losada, M. Mozaki, and K. Tagawa: Photoproduction of hydrogen, photofixation of nitrogen and a concept of photosynthesis. Nature (Lond.) 190, 601 (1961).

    Google Scholar 

  • Baltscheffsky, H., and B. Arwidsson: Evidence for two phosphorylation sites in bacterial cyclic photophosphorylation. Biochim. biophys. Acta (Amst.) 65, 425 (1962).

    Article  Google Scholar 

  • —, and M. Baltscheffsky: Inhibitor studies on the light-induced phosphorylation. Acta chem. scand. 14, 257 (1960).

    Google Scholar 

  • Boatman, E. S., and H. C. Douglas: Fine structure of the photosynthetic bacterium Rhodomicrobium vanniellii. J. biophys. biochem. Cytol. 11, 469 (1961).

    PubMed  Google Scholar 

  • Bose, S. K., H. Gest, A. W. Frenkel, and K. Cost: Electron transport system in purple bacteria. Nature (Lond.) 195, 1168 (1962).

    Google Scholar 

  • ——: Bacterial photophosphorylation regulation by redox balance. Proc. nat. Acad. Sci. (Wash.) 49, 337 (1963).

    Google Scholar 

  • Bril, C.: Energy transfer and photooxidative bleaching of bacteriochlorophyll. Biochim. biophys. Acta (Amst.) 66, 50 (1963).

    Article  Google Scholar 

  • Calvin, M., and G. M. Androes: Primary quantum conversion in photosynthesis. Science 138, 867 (1963).

    Google Scholar 

  • Chance, B., and M. Nishimura: On the mechanism of chlorophyll-cytochrome interaction. Proc. nat. Acad. Sci. (Wash.) 46, 19 (1960).

    Google Scholar 

  • Clayton, R. K.: The nature of light-induced absorbancy changes in chromatophores. Photochem. Photobiol. 1, 201 (1962).

    Google Scholar 

  • —: Primary reactions in bacterial photosynthesis II and III. Photochem. Photobiol. 1, 305, 313 (1962).

    Google Scholar 

  • Cohen-Bazire, G., and R. Kunisawa: Some observations on the synthesis and function of the photosynthetic apparatus in Rhodospirillum rubrum. Proc. nat. Acad. Sci. (Wash.) 46, 1543 (1960).

    Google Scholar 

  • —, W. R. Sistrom, and R. Y. Stanier: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. cell. comp. Physiol. 49, 25 (1957).

    Google Scholar 

  • —, and R. Kunisawa: The fine structure of Rhodospirillum rubrum. J. cell. Biol. 16, 401 (1963).

    Article  PubMed  Google Scholar 

  • Drews, G.: Untersuchungen zur Struktur der „Chromatophoren” von Rhodospirillum rubrum und R. molischianum. Arch. Mikrobiol. 36, 99 (1960).

    PubMed  Google Scholar 

  • —: Physiologische Untersuchungen an den Chromatophoren von Rhodospirillum molischianum. Ber. dtsch. bot. Ges. 75, 338 (1962).

    Google Scholar 

  • —, u. P. Giesbrecht: Untersuchungen zur Morphogenese der Bakterienchromatophoren und der Bacteriochlorophyllsynthese bei Rhodospirillum rubrum und Rhodopseudomonas spheroides. Zbl. Bakt., I Abt. Orig. 190, 508 (1963).

    Google Scholar 

  • —, and K. Jäger: Influence of light on the biosynthesis of Bacteriochlorophyll by Rhodopseudomonas spheroides. Nature (Lond.) 199, 1112 (1963).

    Google Scholar 

  • Frenkel, A. W.: Light-induced reaction of bacterial chromatophores and their relation to photosynthesis. Ann. Rev. Plant. Physiol. 10, 53 (1959).

    Article  Google Scholar 

  • Geller, D. M.: Oxidative phosphorylation in extracts of Rhodospirillum rubrum. J. biol. Chem. 237, 2947 (1962).

    Google Scholar 

  • —, and F. Lipmann: Photophosphorylation in extracts of Rhodospirillum rubrum. J. biol. Chem. 235, 2478 (1960).

    PubMed  Google Scholar 

  • Giesberger, G.: Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum species. J. Microbiol. Serol. (Ant. van Leeuwenhoek) 13, 135 (1947).

    Google Scholar 

  • Giesbrecht, P., u. G. Drews: Elektronenmikroskopische Untersuchungen über die Entwicklung der „Chromatophoren” von Rhodospirillum molischianum. Arch. Mikrobiol. 43, 152 (1962).

    PubMed  Google Scholar 

  • Goedheer, J. C.: Spectral and redox properties of bacteriochlorophyll in its natural state. Biochim. biophys. Acta (Amst.) 38, 389 (1960).

    Article  Google Scholar 

  • —: Reversible and irreversible changes of bacteriochlorophyll in chromatophores. J. Bock Carneg. Inst. Wash. 57, 295 (1958).

    Google Scholar 

  • Horio, T., and M. D. Kamen: Observations on the respiratory system of Rhodospirillum rubrum. Biochem. 1, 1141 (1962).

    Google Scholar 

  • Jacobi, G.: Die Stöchiometrie der Photosynthese in isolierten Chloroplasten. Z. Naturforsch. 18b, 711 (1963).

    Google Scholar 

  • Klingenberg, M.: Reversibilität der Energieumwandlungen in der Atmungskette. Angew. Chem. 75, 900 (1963).

    Google Scholar 

  • Losada, M., A. V. Trebst, S. Ogata, and D. I. Arnon: Equivalence of light and ATP in bacterial photosynthesis. Nature (Lond.) 186, 753 (1960).

    Google Scholar 

  • Menke, W.: Structure and chemistry of plastids. Ann. Rev. Plant. Physiol. 13, 27 (1962).

    Article  Google Scholar 

  • Müller, A., B. Rumberg, and H. T. Witt: On the mechanism of photosynthesis. Proc. roy. Soc. B 157, 313 (1963).

    Google Scholar 

  • Niklowitz, W., u. G. Drews: Zur elektronenmikroskopischen Darstellung der Feinstruktur von Rhodospirillum rubrum. Arch. Mikrobiol. 23, 123 (1955).

    PubMed  Google Scholar 

  • Nishimura, M.: Kinetics of photophosphorylation in Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 57, 88 (1962).

    Article  Google Scholar 

  • —: Effects of reagents and temperature on light-induced and dark phases of photophosphorylation. Biochim. biophys. Acta (Amst.) 57, 96 (1962).

    Article  Google Scholar 

  • Nishimura, M. and B. Chance: Studies on the electron transfer system in photosynthetic bacteria III. Microalgae and Photosynthetic Bacteria (Spec. Issue of Plant and Cell Physiol.) S. 239 (1963).

  • Ormerod, J. G., and H. Gest: Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact. Rev. 26, 51 (1962).

    PubMed  Google Scholar 

  • Schachman, H. K., A. B. Pardee, and R. Y. Stanier: Studies in the macromolecular organization of microbial cell. Arch. Biochem. 38, 245 (1952).

    PubMed  Google Scholar 

  • Stanier, R. Y.: Photosynthetic mechanism in bacteria and plants. Bact. Rev. 25, 1 (1961).

    Google Scholar 

  • Sybesma, C., and J. M. Olson: Transfer of chlorophyll exitation energy in green photosynthetic bacteria. Proc. nat. Acad. Sci. (Wash.) 49, 248 (1963).

    Google Scholar 

  • Tagawa, K., and D. I. Arnon: Ferredoxin as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537 (1962).

    Google Scholar 

  • —, H. Y. Tsujimoto, and D. I. Arnon: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 49, 567 (1963).

    Google Scholar 

  • ———: Analysis of photosynthetic reactions by the use of monochromatic light. Nature (Lond.) 199, 1247 (1963).

    Google Scholar 

  • Trebst, A., u. H. Eck: Zur Rolle des Plastochinons bei der Photosynthese. Z. Naturforsch. 18b, 694 (1963).

    Google Scholar 

  • Vatter, A. E., and R. S. Wolfe: The structure of photosynthetic bacteria. J. Bact. 75, 480 (1958).

    PubMed  Google Scholar 

  • Vernon, L. P., and O. K. Ash: Coupled photooxidation and photoreduction reactions and associated phosphorylation by chromatophores of Rhodospirillum rubrum. J. biol. Chem. 235, 2721 (1960).

    PubMed  Google Scholar 

  • Vredenberg, W. J., and L. N. M. Duysens: Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature (Lond.) 197, 355 (1963).

    Google Scholar 

  • Witt, H. T., A. Müller, and B. Rumberg: Electron-transport system in photosynthesis of green plants. Nature (Lond.) 197, 987 (1963).

    Google Scholar 

  • Zaugg, W. S.: Coupled photoreduction of ubiquinone and photooxydation of ferrocytochrome c. Proc. nat. Acad. Sci. (Wash.) 50, 100 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drews, G. Untersuchungen zur Photophosphorylierung bei Rhodospirillum molischianum und Rhodospirillum rubrum. Archiv. Mikrobiol. 48, 122–135 (1964). https://doi.org/10.1007/BF00408453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408453

Navigation