Skip to main content
Log in

Urease from Arthrobacter oxydans, a nickel-containing enzyme

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Arthrobacter oxydans, Klebsiella aerogenes and Sporosarcina ureae, growth with urea as a nitrogen source turned out to be more sensitive to inhibition by EDTA than that with ammonia. The inhibition was overcome by added nickel chloride, but not by other divalent metal ions tested. In A. oxydans the uptake of 63Ni was paralleled by an increase in urease (urea amidohydrolase, EC 3.5.1.5) activity under certain conditions. Following growth with radioactive nickel, urease from this strain was enriched by heat treatment and acetone fractionation. Copurification of 63Ni and urease was observed during subsequent Sephadex gel chromatography. Almost the entire labelling was detected together with the purified enzyme after focusing on polyacrylamide gel. The relative molecular mass of the purified urease was estimated to be 242,000. The pH optimum was 7.6, the K m-value 12.5 mmol/l and the temperature optimum 40°C; heat stability was observed up to 65°C. In presence of 10 mmol/l EDTA the protein-nickel binding remained intact at pH 7; at pH 5 and below, nickel was irreversibly removed with concommitant loss of enzyme activity. The results demonstrated that nickel ions are required for active urease formation in the bacterial strains studied, and that urease from A. oxydans is a nickel-containing enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JA, Kopko F, Siedler AJ, Nohle EG (1969) Purification and properties of urease form Proteus mirabilis. Fed Proc 28:764

    Google Scholar 

  • Andrews P (1964) Estimation of the molecular weight of proteins by Sephadex gel filtration. Biochem J 91:222–223

    PubMed  Google Scholar 

  • Bartha R, Ordal EJ (1965) Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strain. J Bact 89:1015–1019

    PubMed  Google Scholar 

  • Blakeley RL, Treston A, Andrews RK, Zerner B (1982) Nickel(II) promoted ethanolysis and hydrolysis of N-(2-pyridylmethyl) urea. A model for urease. J Am Chem Soc 104:612–614

    Google Scholar 

  • Blakeley RL, Dixon NE, Zerner B (1983) Jack bean urease. VII. Light scattering and nickel(II) spectrum. Biochim Biophys Acta 744:219–229

    Google Scholar 

  • Cook AR (1976) Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J Gen Microbiol 92:32–48

    PubMed  Google Scholar 

  • Diekert G, Ritter M (1983) Purification of the nickel carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett 151:41–44

    Article  PubMed  Google Scholar 

  • Diekert G, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120

    Google Scholar 

  • Diekert G, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch Microbiol 127:273–278

    Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc 87:4131–4133

    Google Scholar 

  • Dixon NE, Blakeley RL, Zerner B (1980a) Jack bean urease (EC 3.5.1.5). 1. A simple dry ashing procedure for the determination of trace metals in proteins. The nickel content of urease. Can J Biochem 58:469–473

    PubMed  Google Scholar 

  • Dixon NE, Gazzola C, Asher CJ, Lee DSW, Blakeley RL, Zerner B (1980b) Jack bean urease (EC 3.5.1.5). II. The relationship between nickel enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans. Can J Biochem 58:474–480

    PubMed  Google Scholar 

  • Dixon NE, Blakeley RL, Zerner B (1980c) Jack bean urease (EC 3.5.1.5). III. The involvement of active-site nickel ion in inhibition by β-mercaptoethanol, phosphoamidate, and fluoride. Can J Biochem 58:481–488

    PubMed  Google Scholar 

  • Dixon NE, Hinds JA, Fihelly A, Gazzola C, Winzor DJ, Blakeley RL, Zerner B (1980d). Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can J Biochem 58:1323–1334

    PubMed  Google Scholar 

  • Dixon NE, Riddles PW, Gazzola C, Blakeley RL, Zerner B (1980e). Jack bean urease (EC 3.5.1.5). V. On the mechanism of action of urease on urea, formamide, acetamide, N-methyl-urea, and related compounds. Can J Biochem 58:1335–1344

    PubMed  Google Scholar 

  • Drake HL (1982) Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum. J Bact 149:561–566

    PubMed  Google Scholar 

  • Ellefson WL, Whitman WG, Wolfe RS (1982) Nickel containing factor F430: Chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710

    PubMed  Google Scholar 

  • Fishbein WN (1969) A sensitive and non-inhibitory catalytic gel stain for urease. In: Fifth international symposium on chromatography and electrophoresis. Ann Arbor-Humphrey Sci Publ, Ann Arbor London, pp 238–242

    Google Scholar 

  • Friedrich B, Magasanik B (1977) Urease of Klebsiella aerogenes: Control of its synthesis by glutamine synthetase. J Bact 131:446–452

    PubMed  Google Scholar 

  • Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bact 152:42–48

    PubMed  Google Scholar 

  • Gordon WR, Schwemmer SS, Hillman WS (1978) Nickel and the metabolism of urea by Lemna paucicostata Hegelm. 6746. Planta 140:265–268

    Google Scholar 

  • Graf EG, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel containing enzyme. FEBS Lett 136:165–169

    Article  Google Scholar 

  • Hasnain SS, Piggott B (1983) An EXAFS study of jack bean urease, a nickel metalloenzyme. Biochim Biophys Res Comm 112:279–283

    Google Scholar 

  • Kaltwasser H, Frings W (1980) Transport and metabolism of nickel in microorganisms. In: Nriagu JO (ed) Nickel in the environment. John Wiley, New York, pp 463–493

    Google Scholar 

  • Kaltwasser H, Schlegel HG (1966) NADH-dependent coupled enzyme assay for urease and other ammonia-producing systems. Anal Biochem 16:132–138

    PubMed  Google Scholar 

  • Kaltwasser H, Krämer J, Conger WR (1972) Control of urease formation in certain aerobic bacteria. Arch Microbiol 81:178–196

    Google Scholar 

  • Kamel MY, Hamed RR (1975) Aerobacter aerogenes PRL-R3 urease. Purification and properties. Acta Biol Med Germ 34:971–979

    PubMed  Google Scholar 

  • Kirchgessner M, Schnegg A (1980) Biochemical and physiological effects of nickel deficiency. In: Nriagu JO (ed) Nickel in the environment. John Wiley, New York, pp 1–27

    Google Scholar 

  • Klucas RV, Hanus FJ, Russell SA, Evans HJ (1983) Nickel a micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci USA 80:2253–2257

    Google Scholar 

  • König C, Kaltwasser H, Schlegel HG (1966) Die Bildung von Urease nach Verbrauch der äußeren N-Quelle bei Hydrogenomonas H16. Arch Microbiol 53:231–241

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • MacKay EM, Pateman JA (1980) Nickel requirement of a urease deficient mutant in Aspergillus nidulans. J Gen Microbiol 116:249–251

    PubMed  Google Scholar 

  • MacKay EM, Pateman JA (1982) The regulation of urease activity in Aspergillus nidulans. Biochem Gen 20:763–776

    Google Scholar 

  • McDonald JA, Speeg KV, Champell JW (1972) Urease: A sensitive and specific radiometric assay. Enzymology 42:1–9

    Google Scholar 

  • Polacco JC (1977a) Nitrogen metabolism in soybean tissue culture. II. Urea utilisation and urease synthesis require Ni2+. Plant Physiol 59:827–830

    Google Scholar 

  • Polacco JC (1977b) Is nickel a universal component of plant ureases? Plant Sci Lett 10:249–255

    Google Scholar 

  • Radola BJ (1980) Ultradünnschicht-isoelektrische Fokussierung. Gesellschaft Deutscher Chemiker, Fortbildungskurs Technische Universität, München

    Google Scholar 

  • Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL (1983) Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J Biol Chem 258:2364–2369

    PubMed  Google Scholar 

  • Rees TAV, Bekheet IA (1982) The role of nickel in urea assimilation by algae. Planta 156:385–387

    Google Scholar 

  • Repaske R, Repaske AC (1976) Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl Environ Microbiol 32:585–591

    PubMed  Google Scholar 

  • Romano N, Tolone G, LaLicata R, Ajello F (1979) Urease activity of Ureaplasma urealyticum: some properties of the enzyme. Microbiologica 2:357–367

    Google Scholar 

  • Schneider J (1984) Nachweis von Nickel in Urease aus Arthrobacter oxydans. Dissertation, Saarbrücken

  • Soeder CJ, Engelmann G (1984) Nickel requirement in Chlorella emersonii. Arch Microbiol 137:85–87

    Google Scholar 

  • Spears JW, Hatfield EE (1978) Nickel for ruminants. I. Influence of dietary nickel on ruminal urease activity. J Animal Sci 47:1345–1349

    Google Scholar 

  • Spears JW, Smith CJ, Hatfield EE (1977) Rumen bacterial urease requirement for nickel. J Dairy Sci 60:1073–1076

    PubMed  Google Scholar 

  • Sumner JB (1926) The isolation and cristallisation of the enzyme urease. J Biol Chem 69:435–441

    Google Scholar 

  • Sumner JB, Gralen N, Eriksson-Quensel JB (1938) The molecular weight of ureases. J Biol Chem 125:37–44

    Google Scholar 

  • Tabillion R, Kaltwasser H (1977) Energieabhängige 63Nickel-aufnahme bei Alcaligenes eutrophus H1 und H16. Arch Microbiol 113:145–151

    PubMed  Google Scholar 

  • Tabillion R, Weber F, Kaltwasser H (1980) Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria. Arch Microbiol 124:131–136

    Google Scholar 

  • Thauer RK (1982) Nickel tetrapyrroles in methanogenic bacteria: Structure function, and biosynthesis. Zbl Bakt Hyg I. Abt Orig C 3:265–270

    Google Scholar 

  • Thauer RK, Brandis-Heep A, Diekert G, Gilles HH, Graf EG, Jaenchen R, Schönheit P (1983) Drei neue Nickelenzyme aus anaeroben Bakterien. Naturwissenschaften 70:60–64

    Google Scholar 

  • Varner JE (1960) Urease. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol 4. Academic Press, New York, pp 247–256

    Google Scholar 

  • Winkler RG, Polacco JC, Eskew DL, Welch M (1983) Nickel is not required for apourease synthesis in soybean seeds. Plant Physiol 72:263

    Google Scholar 

  • Zorn C, Dietrich R, Kaltwasser H (1982) Regulation by repression of urease biosynthesis in Proteus rettgeri. Z Allg Microbiol 22:199–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J., Kaltwasser, H. Urease from Arthrobacter oxydans, a nickel-containing enzyme. Arch. Microbiol. 139, 355–360 (1984). https://doi.org/10.1007/BF00408379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408379

Key words

Navigation