Skip to main content
Log in

The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Seventeen strains of phototrophic bacteria (4 strains of Chromatium spp., 2 strains of Thiocapsa sp., 4 strains of Ectothiorhodospira spp., 2 strains of Rhodopseudomonas sp., and 5 strains of Chlorobium spp.) have been grown in sulfide-limited continuous cultures to assess the affinity for sulfide. It was found that the affinity (calculated as the initial slope of the specific growth rate versus the concentration of sulfide) is higher in those phototrophic bacteria that deposit elemental sulfur outside the cells, than in those bacteria that store the sulfur inside the cells. A hypothesis is presented to explain this correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioengin 10:707–723

    Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfide and hydrogen plus thiosulfide as the sole energy sources. Arch Microbiol 117:209–214

    PubMed  Google Scholar 

  • Beeftink HH, Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121:161–167

    Google Scholar 

  • Berner RA (1963) Electrode studies of hydrogen sulfide in marine sediments. Geochim Cosmochim Acta 27:563–575

    Google Scholar 

  • Beudeker RF, Gottschal JC, Kuenen JG (1982) Reactivity versus flexibility in thiobacilli. Antonie van Leeuwenhoek 48:39–51

    PubMed  Google Scholar 

  • Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulfide dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature (Lond) 257:489–492

    Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    PubMed  Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    PubMed  Google Scholar 

  • Fukumori Y, Yamanaka T (1979) Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure. J Biochem 85:1405–1414

    PubMed  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629

    PubMed  Google Scholar 

  • Gray GO, Knaff DB (1982) The role of a cytochrome c-552-cytochrome c complex in the oxidation of sulfide in Chromatium vinosum. Biochim Biophys Acta 680:290–296

    Google Scholar 

  • Hansen TA (1983) Electron donor metabolism in phototrophic bacteria. In: Ormerod JG (ed) Phototrophic bacteria: anaerobic life in the light. Studies in microbiology, vol 4. Blackwell Sci Publ, Oxford, pp 76–99

    Google Scholar 

  • Hansen TA, Van Gemerden H (1972) Sulfide utilization by purple non-sulfur bacteria. Arch Mikrobiol 86:49–56

    PubMed  Google Scholar 

  • Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbial Ecol 5:281–286

    Google Scholar 

  • Imhoff JF, Tindall BJ, Grant WD, Trüper HG (1981) Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130:238–242

    Google Scholar 

  • Kristjansson JK, Schönheit P, Thauer RK (1982) Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria; an explanation for the apparent inhibition of methanogenesis by sulfate Arch Microbiol 131:278–282

    Google Scholar 

  • Madigan MT, Brock TB (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784

    PubMed  Google Scholar 

  • Orion Research Inc (1979) Instruction manual. Sulfide ion electrode, silver ionelectrode model 94-16. Cambridge, MA, USA

  • Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. PhD Thesis University Munich

  • Schlegel HG (1963) Die Schwefelpurpurbakterien. Umschau 18:573–577

    Google Scholar 

  • Then J, Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135:254–258

    Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298:529–542

    Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J Microbiol Serol 30:225–238

    Google Scholar 

  • Van Gemerden H (1974) Coexistence of organisms competing for the same substrates: an example among the purple sulfur bacteria. Microbial Ecol 1:104–119

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:135–143

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1981) Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture Arch Microbiol 129:32–34

    Google Scholar 

  • Van Gemerden H, Jannasch HW (1971) Continuous culture of Thiorhodaceae. Sulfide and sulfur limited growth of Chromatium vinosum. Arch Microbiol 79:345–353

    Google Scholar 

  • Wijbenga DJ, van Germerden H (1981) The influence of acetate on the oxidation of sulfide by Rhodopseudomonas capsulata. Arch Microbiol 129:115–119

    Google Scholar 

  • Zehnder ABJ, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205

    Google Scholar 

  • Zevenboom W (1980) Growth and nutrient uptake kinetics of Oscillatoria agardhii. Ph.D. Thesis, Amsterdam

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Hans G. Schlegel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gemerden, H. The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch. Microbiol. 139, 289–294 (1984). https://doi.org/10.1007/BF00408368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408368

Key words

Navigation