Skip to main content
Log in

Electrophoretic mobility of PM2 DNA treated with ultimate chemical carcinogens or with ultraviolet light

Elektrophoretische Beweglichkeit von PM2 DNA nach Umsetzung mit direkt wirkenden chemischen Carcinogenen oder nach Bestrahlung mit ultraviolettem Licht

  • Original Papers
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Zusammenfassung

Die superhelikale DNA des Pseudomonas Phagen PM2 wurde mit Ultraviolettlicht bestrahlt oder mit kovalent bindenden Carcinogenen wie 7-Brommethyl-benz[a]anthrazen, (Ac)2 ONFln, K-Region Expoxiden und Alkylantien umgesetzt. Mittels Gelelektrophorese wurde die Wanderungsgeschwindigkeit der DNA-Produkte bestimmt. In Trenngelen mit einem Agarosegehalt von 1,3–1,9% nahm die Wanderungsgeschwindigkeit der DNA mit steigender Modifikationsdichte (steigenden Carcinogen-Konzentrationen bzw. UV-Dosen) ab. Dieses Phänomen ist wahrscheinlich darauf zurückführen, daß die DNA-Modifikation eine Abnahme der Superhelix-Dichte bewirkte, im Zuge derer das ursprünglich kompakte, geknäuelte DNA-Molekül schließlich eine offen-zirkuläre Konformation annahm. Ein Vergleich der DNA-Modifikationsdichte mit der damit verbundenen Abnahme der Wanderungsgeschwindigkeit machte deutlich, daß der Grad der Superhelizität sehr empfindlich mit den chemischen DNA-Veränderungen variierte.

DNA-Proben, die in 1.6%igen Agarosegelen eine Wanderungsverzögerung bis zu 70% der Kontroll-DNA zeigten, liefen in 0.4%igen Trenngelen merkwürdigerweise schneller als die Kontrollen. Somit ist in Trenngelen von einem 1,3–1,9igen Agarosegehalt die Abnahme der Superhelix-Dichte von einer Zunahme des Reibungskoeffizienten begleitet; dagegen scheint in 0,4–0,9%igen Agarosegelen dieselbe Abnahme der Superhelix-Dichte zu einer höheren Flexibilität des Makromoleküls und/oder der Freisetzung zusätzlicher elektrischer Ladungen zu führen.

Summary

Superhelical DNA of the Pseudomonas phage PM2 was irradiated with UV-light or reacted with covalently binding carcinogens, such as 7-bromomethyl-benz[a]anthracene, (Ac)2ONFln, K-region epoxides, and alkylating agents. Migration velocity of the DNA products was determined using agarose gel electrophoresis. In gels of more than 1.3%–1.9% agarose, modified PM2 DNA exhibited a dose-(concentration-)dependent decrease of migration velocity. This phenomenon is probably due to a decrease in superhelix density which caused the compact DNA coil to assume eventually an open-circular conformation. Comparison of the extent of DNA modification with the decrease of migration velocity revealed that the superhelical structure sensitively reflected the chemical DNA alterations.

DNA species exhibiting, in 1.6% agarose gels, a migration velocity of up to 30% of that of control DNA showed an increase of velocity in 0.4% agarose. Therefore, in 1.3%–1.9% agarose gels, the decrease of superhelix density is accompanied by an increase of the frictional coefficient, whereas in 0.4%–0.9% agarose gels the same decrease of superhelix density apparently led to a higher degree of flexibility of the macromolecule and/or exposure of additional electric charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

(Ac)2ONFln:

N-acetoxy-2-acetylaminofluorene

(Ac)NHFln:

2-acetylaminofluorene

MeSO2OMe:

methyl methanesulfonate

PM2 DNA (form I):

superhelical DNA of the Pseudomonas phage PM2

PM2 DNA:

nicked form, the open-stranded DNA duplex of PM2

UV-light:

ultraviolet light

References

  • Bauer W, Vinograd J (1968) The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Molecular Biol 33:141–171

    Google Scholar 

  • Blobstein SH, Weinstein IB, Grunberger D, Weisgras J, Harvey RG (1975) Products obtained after in vitro reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with nucleic acids. Biochemistry 14:3451–3458

    PubMed  Google Scholar 

  • Brookes P, Dipple A (1969) On the mechanism of hydrocarbon carcinogenesis. In: Bergman ED, Pullmann B (eds) Israel Academy of Sciences, Jerusalem, pp 139–148

    Google Scholar 

  • Camerman N, Camerman A (1968) Photodimer of thymine in ultraviolet-irradiated DNA: proof of structure by X-ray diffraction. Science (Washington) 160:1451

    Google Scholar 

  • Cohen GL, Bauer WR, Barton JK, Lippard SJ (1979) Binding of cis- and trans-dichlorodiammineplatinum(II) to DNA: evidence for unwinding and shortening of the double helix. Science (Washington) 203:1014–1016

    Google Scholar 

  • Crawford LV, Waring MJ (1967) Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J Molecular Biol 25:23–30

    Google Scholar 

  • Denhardt DT, Kato AC (1973) Comparison of the effect of ultraviolet radiation and ethidium bromide intercalation on the conformation of superhelical ϕX 174 replicative form DNA. J Molecular Biol 77:479–494

    Google Scholar 

  • Dipple A, Brookes P, Mackintosh, DS, Rayman MP (1971) Reaction of 7-bromomethyl-benz[a]anthracene with nucleic acids, polynucleotides, and nucleosides. Biochemistry 10:4323–4330

    PubMed  Google Scholar 

  • Drinkwater NR, Miller JA, Miller EC, Yang N-C (1978) Covalent intercalative binding to DNA in relation to the mutagenicity of hydrocarbon epoxides and N-acetoxy-2-acetylaminofluorene. Cancer Res 38:3247–3255

    PubMed  Google Scholar 

  • Espejo RT, Canelo ES, Sinsheimer RL (1969) DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Nat Acad Sci (USA) 63:1164–1168

    Google Scholar 

  • Friesel H, Hecker E (1977) Reaktion of arene oxides with nucleosides. Cancer Letters 3:169–175

    Article  PubMed  Google Scholar 

  • Fuchs RP (1975) In vitro recognition of carcinogen-induced local denaturation sites in native DNA by S1 endonuclease from Aspergillus oryzae. Nature 257:151–152

    PubMed  Google Scholar 

  • Gupta RD, Mitra S (1974) Strand separation of DNA induced by ultraviolet irradiation in vitro. Biochim Biophysica Acta (Amsterdam) 374:145–158

    Google Scholar 

  • Heflich RH, Dorney DJ, Maher VM, McCormick JJ (1977) Reactive derivatives of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene cause S1 nuclease sensitive sites in DNA and “UV-like” repair. Biochem Biophys Res Commun 77:634–641

    PubMed  Google Scholar 

  • Jeffrey AM, Blobstein SH, Weinstein IB, Beland FA, Harvey RG, Kasai H, Nakanishi K (1976) Structure of 7,12-dimethylbenz[a]anthracene-guanosine adducts. Proc Nat Acad Sci (USA) 73:2311–2315

    Google Scholar 

  • Kriek E (1974) Carcinogenesis by aromatic amines. Biochim Biophysica Acta (Amsterdam) 355:177–203

    Google Scholar 

  • Kriek E, Miller JA, Juhl U, Miller EC (1967) 8-N-2-fluorenylacetamido)guanosine, an arylamidation reaction product of guanosine and the carcinogen N-acetoxy-N-2-fluorenylacetamide in neutral solution. Biochemistry 6:177–182

    PubMed  Google Scholar 

  • Keller W (1975) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Nat Acad Sci (USA) 72:4876–4880

    Google Scholar 

  • Lawley PD (1966) Effects of some chemical mutagens and carcinogens on nucleic acids. In: Davidson JN, Cohn WE (eds) Progress in Nucleic Acid Research and Molecular Biology, Vol 5. Academic Press, New York, pp 89–126

    Google Scholar 

  • Lebowitz J, Chaudhuri AK, Gonenne A, Kitos G (1977) Carbodiimide modification of superhelical PM2 DNA: considerations regarding reaction at unpaired bases and the unwinding of superhelical DNA with chemical probes. Nucleic Acids Res 4:1695–1711

    PubMed  Google Scholar 

  • Legerski RJ, Gray Jr HB, Robberson DL (1977) A sensitive endonuclease probe for lesions in deoxyribonucleic acid helix structure produced by carcinogenic or mutagenic agents. J Biol Chem 252:8740–8746

    PubMed  Google Scholar 

  • Lotlikar PD, Miller EC, Miller JA, Margreth A (1965) The enzymatic reduction of the N-hydroxy dervivatives of 2-acetylaminofluorene and related carcinogens by tissue preparations. Cancer Res 25:1743–1752

    PubMed  Google Scholar 

  • Lotlikar PD, Scribner JD, Miller JA, Miller EC (1966) Reaction of esters of aromatic N-hydroxy amines and amides with methionine in vitro: a model for in vivo binding of amine carcinogens to protein. Life Sci Vol 5. Pergamon Press, London, pp 1263–1269

    Google Scholar 

  • Miller EC (1978) Some current perspectives on chemical carcinogenesis in humans and experimental animals. Cancer Res 38:1479–1496

    PubMed  Google Scholar 

  • Pulkrabek P, Leffler S, Weinstein IB, Grunberger D (1977) Conformation of DNA modified with a dihydrodiol epoxide derivative of benzo[a]pyrene. Biochemistry 16:3127–3132

    PubMed  Google Scholar 

  • Pegg AE (1977) Formation and metabolism of alkylated nucleosides: possible role in carcinogenesis by nitroso compounds and alkylating agents. In: Klein G, Weinhouse S (eds) Advances in Cancer Research Vol 25. Academic Press, New York San Francisco London, pp 195–269

    Google Scholar 

  • Setlow RB (1966) Cyclobutane-type pyrimidine dimers in polynucleotides. Science (Washington) 153:379–386

    PubMed  Google Scholar 

  • Shooter KV, Howse R, Shah SA, Lawley PD (1974) The molecular basis for biological inactivation of nucleic acids. Biochem J 137:303–312

    PubMed  Google Scholar 

  • Thielmann HW (1977) Detection of strand breaks in ϕX 174 RFI and PM2 DNA reacted with ultimate and proximate carcinogens. Z Krebsforsch 90:37–69

    Google Scholar 

  • Thielmann HW, Gersbach H (1978) Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Z Krebsforsch 92:157–176

    Google Scholar 

  • Wang JC (1974) Interactions between twisted DNAs and enzymes: the effects of superhelical turns. J Molecular Biol 87:797–816

    Google Scholar 

  • Wang JC (1974) The degree of unwinding of the DNA helix by ethidium. J Molecular Biol 89:783–801

    Google Scholar 

  • Weinstein IB, Grunberger D (1974) Structural and functional changes in nucleic acids modified by chemical carcinogens. In: Ts'o POP, DiPaolo JA (eds) World Symposium on Model Studies in Chemical Carcinogenesis. Marcell Dekker, New York, pp 217–235

    Google Scholar 

  • Woodworth-Gutai M, Lebowitz J, Kato AC, Denhardt DT (1977) Ultraviolet light irradiation of PM2 superhelical DNA. Nucleic Acids Res 4:1243–1256

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 136. The authors wish to thank Mrs. L. Berry for critically reading the manuscript and for helpful suggestions

This work includes part of the doctoral thesis of R. Hecht, Naturwissenschaftliche Gesamtfakultät der Universität Heidelberg, 1978

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thielmann, H.W., Hecht, R. Electrophoretic mobility of PM2 DNA treated with ultimate chemical carcinogens or with ultraviolet light. J Cancer Res Clin Oncol 96, 243–257 (1980). https://doi.org/10.1007/BF00408097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408097

Schlüsselwörter

Key words

Navigation