Skip to main content
Log in

Verwertung von Fructose durch Hydrogenomonas H16 (I.)

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

Die Hydrogenomonas-Stämme H 1, H 16 und H 20 nutzen als einziges Kohlenhydrat Fructose; chemolithotroph gewachsene Zellen des Stammes H 16 oxydieren diesen Zucker nach einer lag-Phase von 20 min.

Die Fructose wird über den Entner-Doudoroff-Weg umgesetzt; während der Adaptation erhöht sich der Gehalt der Zellen an Phosphoglucose-Isomerase, Glucose-6-phosphat-Dehydrogenase und an den für den Entner-Doudoroff-Weg charakteristischen Enzymen.

Die Aktivität der Ribulosediphosphat-Carboxylase geht bei der Adaptation an Fructose innerhalb von 2 Std um 75% zurück, sinkt dann aber während mehrerer Fructose-Passagen nur langsam ab. Folglich kann selbst mit Fructose gewachsener Hydrogenomonas H 16 Kohlendioxyd über den Calvin-Cyclus fixieren.

Summary

The only carbohydrate utilized by Hydrogenomonas strains H 1, H 16 and H 20 is fructose; chemolithotrophically grown cells of strain H 16 oxidize this sugar following a lag-period of 20 min. Fructose is metabolized via the Entner-Doudoroff-pathway. During the adaptation to fructose, the level of the following enzymes increases in the cells: phosphoglucoseisomerase, glucose-6-phosphate-dehydrogenase and the enzymes characteristic of the Entner-Doudoroff-pathway.

During the change from chemolithotrophic to organotrophic growth, with fructose serving as a substrate, the activity of ribulose-diphosphate carboxylase is reduced by 75% within 2 hrs. However, following repeated growth in a fructose medium, this enzyme activity decreases only very slowly. Consequently fructose-grown Hydrogenomonas H 16 is capable of fixing carbon dioxide via the Calvin cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Atkinson, D. E.: The biochemistry of Hydrogenomonas. II. The adaptive oxidation of organic compounds. J. Bact. 69, 310 (1955).

    PubMed  Google Scholar 

  • Bartha, R. v.: Physiologische Untersuchungen über den chemolithotrophen Stoffwechsel neu isolierter Hydrogenomonas-Stämme. Arch. Mikrobiol. 41, 313 (1962).

    PubMed  Google Scholar 

  • Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. biophys. Acta (Amst.) 1, 292 (1947).

    Article  Google Scholar 

  • Crouch, D. J., and H. H. Ramsey Oxidation of glucose by Hydrogenomonas facilis. J. Bact. 84, 1340 (1962).

    PubMed  Google Scholar 

  • De Ley, J.: Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related micro-organisms. J. appl. Bact. 23, 400 (1960).

    Google Scholar 

  • De Ley, J.: Comparative biochemistry and enzymology in bacterial classification. In: 12. Symp. of Soc. gen. Microbiol. 164 (1962).

  • Doudoroff, M.: The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila, with a contribution to the problem of the direct respiration of di- and polysaccharides. Enzymologia 9, 59 (1940).

    Google Scholar 

  • Eagon, R. G., and A. K. Williams: Enzymatic patterns of adaptation to fructose, glucose and mannose exhibited by Pseudomonas aeruginosa. J. Bact. 79, 90 (1960).

    PubMed  Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. biol. Chem. 196, 853 (1952).

    PubMed  Google Scholar 

  • Gottschalk, G.: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. III. Synthese aus Kohlendioxyd. Arch. Mikrobiol. 47, 236 (1964).

    PubMed  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker, and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bact. Rev. 19, 79 (1955).

    PubMed  Google Scholar 

  • Hirsch, P.: CO2-Fixierung durch Knallgasbakterien. II. Chromatographischer Nachweis der frühzeitigen Fixierungsprodukte. Arch. Mikrobiol. 46, 53 (1963).

    PubMed  Google Scholar 

  • —, G. Georgiev u. H. G. Schlegel: CO2-Fixierung durch Knallgasbakterien. III. Autotrophe und organotrophe CO2-Fixierung. Arch. Mikrobiol. 46, 79 (1963).

    PubMed  Google Scholar 

  • Horecker, B. L., J. Hurwitz, and A. Weissbach: The enzymatic synthesis and properties of ribulose-1,5-diphosphate. J. biol. Chem. 218, 785 (1956).

    PubMed  Google Scholar 

  • Hughes, D. E.: A press for disrupting bacteria and other microorganisms. Brit. J. exp. Path. 32, 97 (1951).

    PubMed  Google Scholar 

  • Hurlbert, R. E.: Control of carboxydismutase formation in the Thiorhodaceae. J. gen. Microbiol. 31, 17 (1963).

    Google Scholar 

  • Johnson, E. J., and M. K. Johnson: Alternate pathways of glucose metabolism in Azotobacter agilis. Proc. Soc. exp. Biol. (N.Y.) 108, 728 (1961).

    Google Scholar 

  • Katznelson, H.: Production of pyruvate from 6-phosphogluconate by bacterial plant pathogens and legume bacteria. Nature (Lond.) 175, 551 (1955).

    Google Scholar 

  • —: Metabolism of phytopathogenic bacteria. II. Metabolism of carbohydrates by cell-free extracts. J. Bact. 75, 540 (1958).

    PubMed  Google Scholar 

  • Kistner, A.: On a bacterium oxidizing carbon monoxide. Proc. kon. ned. Akad. Wet. 56, 444 (1953).

    Google Scholar 

  • Kluyver, A. J., and A. Manten: Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Antonie v. Leeuwenhoek 8, 71 (1942).

    Google Scholar 

  • Kovachevich, R., and W. A. Wood: Carbohydrate metabolism by Pseudomonas fluorescens. IV Purification and properties of 2-keto-3-deoxy-6-phosphogluconate-aldolase. J. biol. Chem. 213, 757 (1955).

    PubMed  Google Scholar 

  • La Rivière, J. W. M.: On the microbial metabolism of the tartaric acid isomers. Dissertation. Delft 1958.

  • Linday, M., and P. J. Syrett: The induced synthesis of hydrogenase by Hydrogenomonas facilis. J. gen. Microbiol. 19, 223 (1958).

    PubMed  Google Scholar 

  • Ling, K. H., W. L. Byrne, and H. Lardy: Phosphohexokinase. In: S. P. Colowick and N. O. Kaplan: Methods in enzymology. Vol. I, p. 306. New York: Academic Press 1955.

    Google Scholar 

  • MacGee, J., and M. Doudoroff: A new phosphorylated intermediate in glucose oxidation. J. biol. Chem. 210, 617 (1954).

    PubMed  Google Scholar 

  • Metzner, H.: Papierchromatographische Trennung der Photosynthese-Intermediärprodukte. Naturwissenschaften 49, 183 (1962).

    Google Scholar 

  • Mortlock, R. P.: Gluconate metabolism of Pasteurella pestis. J. Bact. 84, 53 (1962).

    PubMed  Google Scholar 

  • Packer, L., and W. Vishniac: Chemosynthetic fixation of carbon dioxide and charakteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J. Bact. 70, 216 (1955).

    PubMed  Google Scholar 

  • Palleroni, N. J., R. Contopoulou, and M. Doudoroff: Metabolism of carbohydrate by Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose. J. Bact. 71, 202 (1956).

    PubMed  Google Scholar 

  • Peterkofsky, A., and E. Racker: The reductive pentose phosphate cycle. III. Enzyme activities in cell-free extracts of photosynthetic organisms. Plant. Physiol. 36, 409 (1961).

    Google Scholar 

  • Racker, E., and E. A. R. Schroeder: The reductive pentose phosphate cycle. II. Specific C1-phosphatases for fructose-1,6-diphosphate and sedoheptulose-1,7-diphosphate. Arch. Biochem. 74, 326 (1958).

    PubMed  Google Scholar 

  • Santer, M., and W. Vishniac: zit. nach W. Vishniac and P. A. Trudinger: Carbon dioxide fixation and substrate oxidation in the chemosynthetic sulfur and hydrogen bacteria. Bact. Rev. 26, 168 (1962).

    PubMed  Google Scholar 

  • Schatz, A., and C. Bovell: Growth and hydrogenase activity of a new bacterium Hydrogenomonas facilis. J. Bact. 63, 87 (1952).

    PubMed  Google Scholar 

  • Schlegel, H. G., u. R. M. Lafferty: Radioaktivitätsmessungen in Einzellern auf Membranfiltern. Arch. Mikrobiol. 38, 52 (1961).

    PubMed  Google Scholar 

  • —, G. Gottschalk and R. v. Bartha: Formation and utilization of poly-β-hydroxybutyric acid by Knallgas-Bacteria (Hydrogenomonas). Nature (Lond.) 191, 463 (1961).

    Google Scholar 

  • —, H., Kaltwasser u. G. Gottschalk: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209 (1961).

    PubMed  Google Scholar 

  • Schmidt, K., S. Liaaen Jensen u. H. G. Schlegel: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46, 117 (1963).

    PubMed  Google Scholar 

  • Sokatch, J. T., and I. C. Gunsalus: Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J. Bact. 73, 452 (1957).

    PubMed  Google Scholar 

  • Stouthamer, A. H.: Glucose and galactose metabolism in Gluconobacter liquefaciens. Biochim. biophys. Acta (Amst.) 48, 484 (1961).

    Article  Google Scholar 

  • Szymona, M., and M. Doudoroff: Carbohydrate metabolism in Rhodopseudomonas spheroides. J. gen. Microbiol. 22, 167 (1960).

    PubMed  Google Scholar 

  • Wang, C. H., C. M. Gilmour, and V. H. Cheldelin: Comparative study of glucose catabolism in microorganisms. Congr. int. Microbiol. Stockholm, p. 146 (1957).

  • Waravdekar, V. S., and L. D. Saslaw: A method of estimation of 2-deoxyribose. Biochim. biophys. Acta (Amst.) 24, 439 (1957).

    Article  Google Scholar 

  • Weissbach, A., and J. Hurwitz: The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. biol. Chem. 234, 705 (1959).

    PubMed  Google Scholar 

  • Wilde, E.: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol. 43, 109 (1962).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottschalk, G., Eberhardt, U. & Schlegel, H.G. Verwertung von Fructose durch Hydrogenomonas H16 (I.). Archiv. Mikrobiol. 48, 95–108 (1964). https://doi.org/10.1007/BF00406600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406600

Navigation