Skip to main content
Log in

On the existence of H+-symport in yeasts

A comparative study

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

34 yeast strains representing 22 species and two varieties were investigated for the existence of a proton-sugar symport. The changes in pH of unbuffered cell suspensions on the addition of alkali, acid, transportable sugars and uncouplers were recorded. Responses indicating the existence of an energy dependent proton extrusion and H+-sugar symport were found in most cases, particularly in Rhodotorula but rarely in Saccharomyces species. Remarkable differences were found among strains belonging to the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNP:

2,4-dinitrophenole

CCCP:

carbonyl cyanide m-chlorophenyl hydrazone

References

  • Deák, T., Kotyk, A.: Uphill transport of monosaccharides in Candida beverwijkii. Folia Microbiol. (Praha) 13, 205–211 (1968)

    Google Scholar 

  • Deák, T., Novák, E. K.: Active and passive transport of monosaccharides in Candida albicans. Antonie van Leeuwenhoek 35, Suppl. Yeast Symp. II, J 1–2 (1969)

    PubMed  Google Scholar 

  • Grenson, M., Hou, C., Crabeel, M.: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103, 770–777 (1970)

    PubMed  Google Scholar 

  • Harold, F. M.: Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36, 172–230 (1972)

    PubMed  Google Scholar 

  • Harold, F. M.: Chemiosmotic interpretation of active transport in bacteria. Ann. N. Y. Acad. Sci. 227, 297–311 (1974)

    PubMed  Google Scholar 

  • Harris, G., Thompson, C. C.: The uptake of nutrients by yeasts. III. The maltose permease of a brewing yeast. Biochim. Biophys. Acta 52, 176–183 (1961)

    PubMed  Google Scholar 

  • Höfer, M.: A model of the monosaccharide uphill transporting cell membrane system in yeast. J. Theor. Biol. 33, 599–603 (1971)

    PubMed  Google Scholar 

  • Klöppel, R., Höfer, M.: Transport und Umsatz von Polyalkoholen bei der Hefe Rhodotorula gracilis (glutinis). II. Induzierbarer Transport und Abbau von Pentitolen. Arch. Microbiol. 107, 335–342 (1976)

    PubMed  Google Scholar 

  • Komor, E., Tanner, W.: The hexose-proton symport system of Chlorella vulgaris. Eur. J. Biochem. 44, 219–223 (1974)

    PubMed  Google Scholar 

  • Kotyk, A.: Intracellular pH of baker's yeast. Folia Microbiol. (Praha) 8, 27–31 (1963)

    Google Scholar 

  • Kotyk, A.: Properties of the sugar carrier in baker's yeast. II. Specificity of transport. Folia Microbiol. (Praha) 12, 121–131 (1967)

    Google Scholar 

  • Kotyk, A.: Molecular aspects of nonelectrolyte transport in yeasts. Proc. 3rd Internat. Spec. Symp. on Yeasts (Otaniemi, Helsinki), Part. II, pp. 103–127 (1973)

  • Kotyk, A., Höfer, M.: Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochim. Biophys. Acta 102, 410–422 (1965)

    PubMed  Google Scholar 

  • Kotyk, A., Kleinzeller, A.: Transport of D-xylose and sugar space in baker's yeast. Folia Microbiol. (Praha) 8, 156–164 (1963)

    Google Scholar 

  • Kotyk, A., Michaljanicová, D.: Nature of the uptake of D-galactose, D-glucose and α-methyl-D-glucoside by Saccharomyces cerevisiae. Biochim. Biophys. Acta 332, 104–113 (1968)

    Google Scholar 

  • Kotyk, A., Rihová, L.: energy requirement for amino acid uptake in Saccharomyces cerevisiae. Folia Microbiol. (Praha) 17, 353–356 (1972)

    Google Scholar 

  • Kuo, S.-C., Cirillo, V. P.: Galactose transport in Saccharomyces cerevisiae. III. Characteristics of galactose uptake in transferaseless cells: evidence against transport-associated phosphorylation. J. Bacteriol. 103, 679–685 (1970)

    PubMed  Google Scholar 

  • Misra, P. C., Höfer, M.: An energy-linked proton extrusion across the cell membrane of Rhodotorula gracilis. FEBS Letters 52, 95–99 (1975)

    PubMed  Google Scholar 

  • Novák, E. K., Deák, T.: General aspects of sugar transport in various taxonomic areas of yeast. In: Yeast as models in science and technics. Proc. 1 st Special. Internat. Symp. on Yeast (A. Kocková-Kratochvilová, E. Minarik, eds.), pp. 479–490. Bratislava: Publ. House Slovak Acad. Sci. 1972

    Google Scholar 

  • Okada, H., Halvorson, H. O.: Uptake of α-thioethyl-D-glucopyranoside by Saccharomyces cerevisiae. Biochim. Biophys. Acta 82, 547–555 (1964)

    PubMed  Google Scholar 

  • Seaston, A., Inkson, C., Eddy, A. A.: The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem. J. 134, 1031–1043 (1973)

    PubMed  Google Scholar 

  • Slayman, C. L., Slayman, C. W.: Depolarisation of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc. Natl. Acad. Sci. (U.S.A.) 71, 1935–1939 (1974)

    Google Scholar 

  • Steveninck, J. van: The mechanism of transmembrane glucose transport in yeast: evidence for phosphorylation associated with transport. Arch. Biochem. Biophys. 130, 244–252 (1969)

    PubMed  Google Scholar 

  • Steveninck, J. van: Transport and transport associated phosphorylation of galactose in Saccharomyces cerevisiae. Biochim. Biophys. Acta 274, 575–583 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deak, T. On the existence of H+-symport in yeasts. Arch. Microbiol. 116, 205–211 (1978). https://doi.org/10.1007/BF00406038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406038

Key words

Navigation