Skip to main content
Log in

Fibroblastic and dendritic reticulum cells of lymphoid tissue

Ultrastructural, histochemical, and 3H-thymidine labeling studies

  • Symposium on Recent Data from the Characterization of Malignant Lymphoma, November 7–8, 1980 in Kiel
  • Miscellaneous
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

Fibroblastic reticulum cells of different lymphoid organs were investigated to clarify their relationship to other stationary cells of the lymphoid tissue and to fibroblasts of the connective tissue.

Fibroblastic reticulum cells have many ultrastructural characteristics of fibroblasts but differ from them in containing prominent bundles of microfilaments and in reacting strongly with antibodies to smooth muscle type myosin and actin. The fibroblastic reticulum cell may be thus classified as a myofibroblast. Enzyme-histochemical studies showed that fibroblastic reticulum cells contain a definite alkaline phosphatase isoenzyme. During ontogeny fibroblastic and dendritic reticulum cells are derived from the local mesenchyme and may be considered as primary stationary reticulum cells. During the formation of the follicle in the splenic white pulp in young rats fibroblastic and dendritic reticulum cells show a different turnover which speaks in favor of a proliferation of dendritic reticulum cells or their precursors in follicle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed Z, Reis JL (1958) The activation and inhibition of 5-nucleotidase. Biochem J 69:386–387

    Google Scholar 

  • Bahr M, Wilkinson JH (1967) Urea as a selective inhibitor of human tissue alkaline phosphatases. Clin Chim Acta 17:367–370

    Google Scholar 

  • Borgers M (1973) The cytochemical application of new potent inhibitors of alkaline phosphatases. J Histochem Cytochem 21:812–824

    Google Scholar 

  • Burke JS, Simon GT (1970) Electron microscopy of the spleen. I. Anatomy and microcirculation. Am J Pathol 58:127–155

    Google Scholar 

  • Chan AWL, Kellen JA (1975) Resistance to levamisole (R 12,458) in heat-stable alkaline phosphatases. Clin Chim Acta 60:91–96

    Google Scholar 

  • Conyers RAJ, Birkett DJ, Neale FC, Posen S, Brudenell-Woods J (1967) The action of EDTA on human alkaline phosphatases. Biochim Biophys Acta 139:363–371

    Google Scholar 

  • Drenckhahn D (1980) Untersuchungen über den zellulären Aufbau und die Innervation des kontraktilen Apparates der Milz von Mensch und Ratte. Zusammenfassungen der 2. Arbeitstagung der Anatomischen Ges. in Würzburg, 8.-10. Okt. 1980. Anat Anz (im Druck)

  • Drenckhahn D, Unsicker K, Griesser G-H, Schumacher U, Gröschel-Stewart U (1978) Different myosins in myoid and entodermal reticular epithelial cells of the thymus. An immunocytochemical study using specific antibodies against striated and smooth muscle myosin. Cell Tiss Res 187:97–103

    Google Scholar 

  • Fliedner TM, Haas RJ, Stehle H, Adams A (1968) Complete labeling of all cell nuclei in newborn rats with H3-thymidine. A tool for the evaluation of rapidly and slowly proliferation cell systems. Lab Invest 18:249–259

    Google Scholar 

  • Fishman WH, Sie H-G (1971) Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine, and placenta. L-phenylalanine, L-tryptophan, L-homoarginine. Enzymologia 41:141–167

    Google Scholar 

  • v. Furth R (1980) Mononuclear phagocytes. North Holland Publ Comp

  • Gabbiani G, Montesano D (1977) Reparative processes in mammalian wound healing: The role of contractile phenomena. Internat Rev Cytol 48:187–219

    Google Scholar 

  • Gabbiani G, Chaponnier Ch, Hüttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76:561–568

    Google Scholar 

  • Gröschel-Stewart U (1980) Immunochemistry of cytoplasmic contractile proteins. Internat Rev Cytol 65:193–254

    Google Scholar 

  • Haas RJ, Bohne F, Fliedner TM (1969) On the development of slowly-turning-over cell types in neonatal rat bone marrow. (Studies utilizing the complete tritiated thymidine labeling method complemented by C-14 thymidine administration). Blood 34:791–806

    Google Scholar 

  • Hendricks HR, Eestermans IL, Hoefsmit ECM (1980) Depletion of macrophages and disappearance of postcapillary high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Cell Tiss Res 211:375–389

    Google Scholar 

  • Heusermann U, Zurborn K-H, Schroeder L, Stutte HJ (1980) The origin of the dendritic reticulum cell. An experimental enzyme-histochemical and electron microscopic study on the rabbit spleen. Cell Tiss Res 209:279–294

    Google Scholar 

  • Horne M, Cornish CJ, Posen S (1968) Use of urea denaturation in the identification of human alkaline phosphatases. J Lab Clin Med 72:905–915

    Google Scholar 

  • Izard J, de Harven E (1968) Increased numbers of characteristic type of reticular cell in the thymus and lymphnodes of leukemic mice: An electron-microscope study. Cancer Res 28:421–433

    Google Scholar 

  • Kaiserling E (1977) Non-Hodgkin-Lymphome. Ultrastruktur und Cytogenese. In: Veröffentilichungen aus der Pathologie (ed. W. Büngeler et al.) No. 105. Gustav Fischer-Verlag, Stuttgart

    Google Scholar 

  • Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G (1974) “Contractile interstitial cells” in pulmonary alveolar septa: a possible regulation of ventilation/perfusion ratio? J Cell Biol 60:375–392

    Google Scholar 

  • Kapanci Y, Mo Costabella P, Cerutti P, Assimacopoulos A (1979) Distribution and function of cytoskeletal proteins in lung cells with particular reference to “contractile interstitial cells”. Methods Achiev Exp Pathol 9:147–168

    Google Scholar 

  • Kaplan MM (1972) Alkaline phosphatase. Gastroenterology 62:452–469

    Google Scholar 

  • Kaplow LS (1955) A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity insmears of blood and marrow. Blood 10:1023–1029

    Google Scholar 

  • Leder L-D, Stutte HJ (1975) Seminar für hämatologisch-zytochemische Techniken. Verh Dtsch Ges Pathol 59:503–509

    Google Scholar 

  • Lennert K, Löffler H, Leder L-D (1961) Fermenthistochemische Untersuchungen des Lymphknotens. I. Mitt. Alkalische Phoasphatase in Schnitt und Ausstrich. Virchows Arch [Pathol Anat] 334:399–418

    Google Scholar 

  • Lennert K, Müller-Hermelink HK (1975) Lymphocyten und ihre Funktionsformen. Morphologie, Organisation und immunologische Bedeutung. Verh Anat Ges 69:19–62

    Google Scholar 

  • Lennert K, Kaiserling E, Müller-Hermelink HK (1978) Malignant lymphomas: Models of differentiation and cooperation of lymphoreticular cells. In: Differentiation of normal an neoplastic hematopoietic cells. Cold Spring Harbor Laboratory

  • Lin CW, Sie HG, Fishman WH (1971) L-tryptophan. A non-allosteric organ-specific uncompetive inhibitor of human placental alkaline phosphatase. Biochem J 124:509–516

    Google Scholar 

  • Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Stratkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550

    Google Scholar 

  • Majno G (1979) The story of the myofibroblasts. Am J Surg Pathol 3:535–542

    Google Scholar 

  • Mayahara H, Hirano H, Saito T, Ogawa K (1967) The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie 11:88–96

    Google Scholar 

  • Mühlbach H (1977) Histochemische Darstellung der alkalischen Phosphatase und der 5′-Nukleotidase in der menschlichen Gaumentonsille. Kiel: Inaug Diss

    Google Scholar 

  • Mühlbach and Müller-Hermelink 1981 (in preparation)

  • Müller-Hermelink HK (1974) Characterization of the B-cell and T-cell regions of human lymphatic tissue through enzyme histochemical demonstration of ATPase and 5′-nucleotidase activities. Virchows Arch [Cell Pathol] 16:371–378

    Google Scholar 

  • Müller-Hermelink HK, Heusermann U, Stutte HJ (1974) Enzyme histochemical observations in the localization and structure of the T-cell and B-cell regions in the human spleen. Cell Tiss Res 154:167–179

    Google Scholar 

  • Müller-Hermelink HK, Heusermann U, Kaiserling E, Stutte HJ (1976) Human lymphatic microecology — Specificity, characterization, and ontogeny of different reticulum cells in the B-cell and T-cell regions. In: Immune reactivity of lymphocytes. Adv Exp Med Biol 66:177–182

  • Müller-Hermelink HK, Lennert K (1978) The cytologic, histologic, and functional bases for a modern classification of lymphomas. In: Lennert K: Malignant lymphomas other than Hodgkin's disease. (Handb spez path Anat u Histol, Vol 1/3B:1–82, Uehlinger E, Hrsg, Springer, Berlin Heidelberg New York)

    Google Scholar 

  • Müller-Hermelink HK, Kaiserling E (1975) Seminar für elektronenmikroskopisch-histochemische Techniken. Verh Dtsch Ges Pathol 59:522–527

    Google Scholar 

  • Müller-Hermelink HK, Kaiserling E (1980) Different reticulum cells of the lymph node: microecological concept of lymphoid tissue organization. In: v.d. Tweel (ed) Malignant lymphoproliferative diseases. Martinus Nijhoff Publ., The Hague Boston London, pp 57–70

    Google Scholar 

  • Nanba K, Jaffe ES, Braylan RC, Soban ES Berard CW (1977) Alkaline phosphatase-positive malignant lymphoma. A subtype of B-cell lymphomas. Am J Clin Pathol 68:535–543

    Google Scholar 

  • Nathanson L, Fishman WH (1971) New observations on the Regan isoenzyme of alkaline phosphatase in cancer patients. Cancer 27:1388–1397

    Google Scholar 

  • Neale FC, Clubb JS, Hotchkis D, Posen S (1965) Heat stability of human placental alkaline phosphatase. J Clin Pathol 18:359–363

    Google Scholar 

  • Pictet R, Orci L, Forssmann WG, Girardier L (1969) An electron microscope study of the perfusion-fixed spleen. I. The splenic circulation and the RES concept. Z Zellforsch 96:372–399

    Google Scholar 

  • Posen S, Neale C, Clubb JS (1965) Heat inactivation in the study of human alkaline phosphatases. Ann Intern Med 52:1234–1243

    Google Scholar 

  • Rufo MB, Fishman WH (1977) L-homoarginine a specific inhibitor of liver-type alkaline phosphatase, applied to the recognition of liver-type enzyme activity in rat intestine. J Histochem Cytochem 20:338–343

    Google Scholar 

  • Veldman JE, Kaiserling E (1980) Interdigitating cells. In: Carr J, Daems WT (eds) The reticulo-endothelial system. Plenum Publ Comp, New York, pp 381–415

    Google Scholar 

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH. Am J Clin Pathol 27:13–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the DFG, SFB 111, CN1, Dr 91/2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Hermelink, H.K., Gaudecker, B.v., Drenckhahn, D. et al. Fibroblastic and dendritic reticulum cells of lymphoid tissue. J Cancer Res Clin Oncol 101, 149–164 (1981). https://doi.org/10.1007/BF00405075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405075

Key words

Navigation