Skip to main content
Log in

Geochemical controls on a calcite precipitating spring

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A small spring fed stream was found to precipitate calcite by mainly inorganic processes and in a nonuniform manner. The spring water originated by rainwater falling in a 0.8 km2 basin, infiltrating, and dissolving calcite and dolomite followed by dissolution of gypsum or anhydrite. The Ca2+/Mg2+ indicates that calcite is probably precipitated in the subsurface from a supersaturated solution. This water emerges from the spring still about 5 times supersaturated with respect to calcite and continues calcite precipitation. When 10 times supersaturation is reached, due to CO2 degassing the precipitation is more rapid. The calcite accumulation from the stream with a flow of 5 l/s is calculated to be 12600 kg/yr with the highest rates in areas where CO2 degassing is the greatest. The non-equilibrium, as shown by the high calcite supersaturation, is also reflected in a variable partitioning pattern for Sr2+ between the water and calcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Burton, J. A., Prim, R. C., Slichter, W. P.: The distribution of solute in crystals grown from the melt. J. Chem. Phys. 21, 1987–1991 (1953)

    Google Scholar 

  • Freitag, H.: Personal communication, Systematisch-Geobotanisches Institut, Göttingen (1975)

  • Jacobson, R. L., Langmuir, D.: An accurate method for calculating saturation levels of ground waters with respect to calcite and dolomite. Trans. Cave Res. Group Great Britain 14, 104–108 (1972)

    Google Scholar 

  • Jacobson, R. L., Langmuir, D.: Controls on the quality variation of some carbonate spring waters. J. Hydrol. 23, 247–265 (1974)

    Article  Google Scholar 

  • Kern, D. M.: The hydration of carbon dioxide. J. Chem. Educ. 37, 14–22 (1960)

    Google Scholar 

  • Parizek, R. R., White, W. B., Langmuir, D.: Hydrogeology and geochemistry of fold and faulted carbonate rocks of the central Appalachian type and related land use problems. GSA Guidebook, 184 p., 1971

  • Savelli, C., Wedepohl, K. H.: Geochemische Untersuchungen an Sinterkalken (Travertinen). Contrib. Mineral. Petrol. 21, 238–256 (1969)

    Google Scholar 

  • Shuster, E. T., White, W. B.: Seasonal fluctuations in the chemistry of limestone springs: A possible means for characterizing carbonate aquifers. J. Hydrol. 14, 93–128 (1971)

    Article  Google Scholar 

  • Taras, H. J., Greenberg, A. E., Hoak, R. D., Rand, M. C.: Standard method for the examination of water and waste water, p. 874. New York, N.Y.: Amer. Publ. Health Assoc. 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, R.L., Usdowski, E. Geochemical controls on a calcite precipitating spring. Contr. Mineral. and Petrol. 51, 65–74 (1975). https://doi.org/10.1007/BF00403513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403513

Keywords

Navigation