Skip to main content
Log in

Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulosebiphosphate carboxylase in a H2-uptake positive strain of Rhizobium japonicum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

H2-uptake positive strains (122 DES and SR) and H2-uptake negative strains SR2 and SR3 of Rhizobium japonicum were examined for ribulosebisphosphate (RuBP) carboxylase and H2-uptake activities during growth conditions which induced formation of the hydrogenase system. The rate of 14CO2 uptake by hydrogenase-derepressed cells was about 6-times greater in the presence than in the absence of H2. RuBP carboxylase activity was observed in free-living R. japonicum strains 122 DES or SR only when the cells were derepressed for their hydrogenase system. Hydrogenase and RuBP carboxylase activities were coordinately induced by H2 and both were repressed by added succinate. Hydrogenase-negative mutant strains SR2 and SR3 derived from R. japonicum SR showed no detecyable RuBP carboxylase activities under hydrogenase derepression conditions. No detectable RuBP carboxylase was observed in bacteroids formed by H2-uptake positive strains R. japonicum 122 DES or SR. Propionyl CoA carboxylase activity was consistently observed in extracts of cells from free-living cultures of R. japonicum but activity was not appreciably influenced by the addition of H2. Neither phosphoenolpyruvate carboxylase nor phosphoenolpyruvate carboxykinase activity was detected in extracts of R. japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RuBP:

Ribulose 1,5-bisphosphate

(Na2EDTA):

(Ethylenedinitrilo)-tetraacetic acid, disodium salt

(propionyl CoA):

Propionyl coenzyme A

(PEP):

Phosphoenolpyruvate

(GSH):

Reduced glutathione

(Tricine):

N-tris(hydroxymethyl)-methylglycine

References

  • Aragno, M., Schlegel, H. G.: Physiological characterization of the hydrogen bacterium Aquaspirillum autotrophicum. Arch. Microbiol 116, 221–229 (1978)

    Google Scholar 

  • Bergerson, F. J.: Formation and function of bacteroids. In: The biology of nitrogen fixation (A. Quispel, ed.), pp. 473–498. Amsterdam-Oxford: North-Holland Publishing Company. New York: American Elsevier Publishing Company, Inc. 1974

    Google Scholar 

  • Bowien, B., Mayer, F., Codd, G. A., Schlegel, H. G.: Purification, some properties and quaternary structure of the D-ribulose-1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch. Microbiol. 110, 157–166 (1976)

    PubMed  Google Scholar 

  • Christeller, J. T., Laing, W. A., Sutton, W. D.: Carbon dioxide fixation by lupin root nodules. 1. Characterization, association with phosphoenolpyruvate carboxylase, and correlation with nitrogen fixation during nodule development. Plant Physiol. 60, 47–50 (1977)

    Google Scholar 

  • Davidson, E. A. Techniques for paper strip counting in a scintillation spectrometer. Packard Instruments Co. Tech. Bull. No. 4, Downers Grove, Ill (1962)

  • Dixon, R. O. D.: Hydrogen uptake and exchange by pea root nodules. Ann. Bot 31, (179–188 (1967)

    Google Scholar 

  • Eberhardt, U.: On chemolithotrophy and hydrogenase of a Grampositive Knallgas bacterium. Arch. Mikrobiol 66, 91–104 (1969)

    PubMed  Google Scholar 

  • Emerich, D. W., Ruiz-Argüeso, T., Ching, T. M., Evans, H. J.: Hydrogen-dependent nitrogenase activity and ATP formation in R. japonicum bacteroids. J. Bacteriol. 137, 153–160 (1979)

    PubMed  Google Scholar 

  • Evans, H. J., Ruiz-Argüeso, T., Jennings, N. T., Hanus, F. J.: Energy coupling efficiency of symbiotic nitrogen fixation. In: Genetic engineering for nitrogen fixation (A. Hollaender, ed.), pp. 333–345. New York-London: Plenum Press 1977

    Google Scholar 

  • Goa, J.: A micro-biuret method for protein determination. Determination of total protein in cerebrospinal fluid. Scand. J. Clin. and Lab. Invest. 5, 218–222 (1953)

    Google Scholar 

  • Jackson, E. K., Evans, H. J.: Propionate in heme biosynthesis in soybean nodules. Plant Physiol. 41, 1673–1680 (1966)

    Google Scholar 

  • Johnson, G. V., Evans, H. J., Ching, T.: Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol. 41, 1330–1336 (1966)

    Google Scholar 

  • Klucas, R. V., Koch, B., Russell, S. A., Evans, H. J.: Purification and some properties of the nitrogenase from soybean (Glycine max. Merr.) nodules. Plant Physiol. 43, 1906–1912 (1968)

    Google Scholar 

  • Laane, C., Haaker, H., Veeger, C.: Involvement of cytoplasmic membrane in nitrogen fixation by Rhizobium leguminosarum bacteroids. Eur. J. Biochem. 87, 147–153 (1978)

    PubMed  Google Scholar 

  • Lane, M. D., Halenz, D. R.: Mitochondrial propionyl carboxylase. In: Methods in enzymology, Vol. 5 (S. P. Colowick, N. O. Kaplan, eds.), pp. 576–581. New York-London: Academic Press 1962

    Google Scholar 

  • Lowe, R. H., Evans, H. J.: Carbon dioxide requirement for growth of legume nodule bacteria. Soil Sci. 94, 351–365 (1962)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Maier, R. J., Campbell, N. E. R., Hanus, F. J., Simpson, F. B., Russell, S. A., Evans, H. J.: Expression of hydrogenase activity in free-living Rhizobium japonicum. Proc. Natl. Acad. Sci. 7, 3258–3262 (1978a)

    Google Scholar 

  • Maier, R. J., Postgate, J. R., Evans, H. J.: Rhizobium japonicum mutants unable to use hydrogen. Nature 276, 494–495 (1978b)

    Google Scholar 

  • Maier, R. J., Hanus, F. J., Evans, H. J.: Regulation of hydrogenase in Rhizobium japonicum. J. Bacteriol. 137, 824–829 (1979)

    Google Scholar 

  • McFadden, B. A., Tu, C. L.: Ribulose diphosphate carboxylase and CO2 incorporation in extracts of Hydrogenomonas facilis. Biochem. Biophys. Res. Comm. 19, 728–733 (1965)

    PubMed  Google Scholar 

  • McFadden, B. A., Tu, C. L.: Regulation of autotrophic and heterotrophic carbon dioxide fixation in Hydrogenomonas facilis. J. Bacteriol. 93, 886–893 (1967)

    PubMed  Google Scholar 

  • Peterson, J. B., Evans, H. J.: Phosphoenolpyruvate carboxylase from soybean nodule cytosol: Evidence for isoenzymes and kinetics of the most active component. Biochim. Biophys. Acta 567, 448–452 (1979)

    Google Scholar 

  • Phelps, A. S., Wilson, P. W.: Occurrence of hydrogenase in nitrogenfixing organisms. Proc. Soc. Exp. Biol. (N.Y.) 47, 473–476 (1941)

    Google Scholar 

  • Ruiz-Argüeso, T., Hanus, J., Evans, H. J.: Hydrogen Production and uptake by pea nodules as affected by strains of Rhizobium leguminosarum. Arch. Microbiol 116, 113–118 (1978)

    Google Scholar 

  • Schlegel, H. G., Eberhardt, U.: Regulatory phenomena in the metabolism of Knallgas bacteria. Adv. Microb. Physiol. 7, 205–242 (1972)

    Google Scholar 

  • Schubert, K. R., Evans, H. J.: Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. 73, 1207–1211 (1976)

    Google Scholar 

  • Shug, A. L., Hamilton, P. B., Wilson, P. W.: Hydrogenase and nitrogen fixation. In: Inorganic nitrogen metabolism. (W. D. McElroy, B. Glass, eds.), pp. 344–360. Baltimore: The John Hopkins Press 1956

    Google Scholar 

  • Stickland, L. H.: The determination of small quantities of bacteria by means of the Biuret reaction. J. Gen. Microbiol. 5, 698–703 (1951)

    PubMed  Google Scholar 

  • Valley, G., Rettger, L. F.: The influence of carbon dioxide on bacteria. J. Bacteriol. 14, 101–127 (1927)

    Google Scholar 

  • Vennesland, B.: Conversion of p-pyruvate to oxalacetate (plant.). In: Methods of enzymology, Vol. 5 (S. P. Colowick, N. O. Kaplan, eds.), pp. 617–622. New York-London: Academic Press 1962

    Google Scholar 

  • Vincent, J. M.: Root-nodule symbioses with Rhizobium. In: The biology of nitrogen fixation (A. Quispel, ed.), pp. 265–341. New York: American Elsevier Publishing Company, Inc. Amsterdam-Oxford:North-Holland Publishing Company 1974

    Google Scholar 

  • Wang, C. H., Willis, D. L., Loveland, W. D.: Radiotracer methodology in the biological, environmental and physical sciences. Englewood Cliffs, New Jersey: Prentice Hall, Inc. 1975

    Google Scholar 

  • Wang, R., Healey, F. P., Myers, J.: Amperometric measurement of hydrogen evolution in Chlamydomonas. Plant Physiol. 48, 108–110 (1971)

    Google Scholar 

  • Wishnick, M., Lane, M. D.: Ribulose diphosphate carboxylase from spinach leaves. In: Methods in enzymology, Vol. 23 (A. San Pietro, ed.), pp. 570–577. New York-San-Francisco-London: Academic Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, F.B., Maier, R.J. & Evans, H.J. Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulosebiphosphate carboxylase in a H2-uptake positive strain of Rhizobium japonicum . Arch. Microbiol. 123, 1–8 (1979). https://doi.org/10.1007/BF00403496

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403496

Key words

Navigation