Skip to main content
Log in

Survival of Chromatium vinosum at low light intensities

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of low irradiation on the viability of Chromatium vinosum was investigated. Cultures were precultivated at 1,000 lux (μ=0.1/h). Then, before the substrate was depleted, illumination was changed to either complete darkness or about 30 lux. Previously, the latter light intensity had been found not to promote growth.

The parameters assayed were viability, protein, bacteriochlorophyll, ATP, RNA, DNA, absorbance (E 260) of the supernatant, and total anthron-positive material.

The data show that irradiation insufficiently high to promote growth, results in viability percentages as high as 90% after 8 days, whereas cultures incubated in complete darkness are virtually dead by then. Neither in the light nor in the dark a degradation of protein or cell wall hexoses was observed. The RNA content also remained constant. However, particularly in the dark cultures DNA was found to decrease concomitant with increased E 260 readings of the supernatant. It is considered unlikely that such essential macromolecules are degraded to serve the maintenance energy requirements. The ecological impact of the observations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PHB:

poly-β-hydroxybutyric acid

Bchl:

Bacteriochlorophyll

References

  • Atkinson, D. E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochem. J. 7, 4030–4034 (1968)

    Google Scholar 

  • Beeftink, H. H., Van Gemerden, H.: Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch. Microbiol. 121, 161–167 (1979)

    Google Scholar 

  • Biebl, H., Pfennig, N.: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 9–16 (1978)

    Google Scholar 

  • Breznak, J. A., Potrikus, C. J., Pfennig, N., Ensign, J. C.: Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum. J. Bacteriol. 134, 381–388 (1978)

    Google Scholar 

  • Clayton, R. K.: Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim. Biophys. Acta 75, 312–323 (1963)

    Google Scholar 

  • Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y.: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49, 25–68 (1957)

    Google Scholar 

  • Culver, D. A., Brunskill, G. J.: Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanog. 14, 862–873 (1969)

    Google Scholar 

  • Dawes, E. A.: Endogenous metabolism and the survival of starved prokaryotes. Symp. Soc. Gen. Microbiol. 26, 19–53 (1976)

    Google Scholar 

  • Dawes, E. A., Senior, P. J.: The role and regulation of energy reserve polymers in micro-organisms. Adv. Microb. Physiol. 10, 135–266 (1973)

    Google Scholar 

  • Fuller, R. C., Conti, S. F., Mellin, D. B.: The structure of the photosynthetic apparatus in the green and purple sulfur bacteria. In: Bacterial photosynthesis (H. Gest, A. San Pietre, L. P. Vernon, eds.), pp. 71–88. Yellow Springs: The Antioch Press 1963

    Google Scholar 

  • Göbel, F.: Quantum efficiencis of growth. In: The photosynthetic bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 907–925. London-New York: Plenum Press 1978

    Google Scholar 

  • Gons, H. J., Mur, L. R.: An energy balance for algal populations in light-limiting conditions. Verh. Internat. Verein. Limnol. 19, 2729–2733 (1975)

    Google Scholar 

  • Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. In: Methods in Microbiology (J. R. Norris, D. W. Ribbons, eds.), Vol. 5B, pp. 209–344. New York: Academic Press 1971

    Google Scholar 

  • Holm-Hansen, O., Booth, C. R.: The measurement of adenosinetriphosphate in the ocean and its ecological significance. Limnol. Oceanog. 11, 510–519 (1966)

    Google Scholar 

  • Holt, S. C., Marr, A. G.: Effect of light intensity on the formation of intracytoplasmic membrane in Rhodospirillum rubrum. J. Bacteriol. 89, 1421–1429 (1965)

    Google Scholar 

  • Levin, G. V., Chen, C.-S., Davis, G.: Development of the firefly bioluminescent assay for the rapid, quantitative detection of microbial contamination in water. Aerospace medical research lab. AMRL-TR-67-71, 1967. c.f. Manual for DuPont 760 Luminescence Biometer

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Lundin, A., Thore, A.: Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Appl. Microbiol. 30, 713–721 (1975)

    Google Scholar 

  • Matheron, R., Baulaigue, R.: Influence de la pénétration de la lumière solaire sur le développement des bactéries phototrophes sulfureuses dans les environnements marins. Can. J. Microbiol. 23, 267–270 (1977)

    Google Scholar 

  • Mechler, B., Oelze, J.: Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D. I. The influence of growth conditions. Arch. Microbiol. 118, 91–97 (1978)

    Google Scholar 

  • Merrick, J. M.: Metabolism of reserve materials. In: The photosynthetic bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 199–219. London, New York: Plenum Press 1978

    Google Scholar 

  • Miovic, M. L., Gibson, J.: Nucleotide pools in growing Chromatium strain D. J. Bacteriol. 108, 954–956 (1971)

    Google Scholar 

  • Miovic, M. L., Gibson, J.: Nucleotide pools and adenylate energy charge in balanced and unbalanced growth of Chromatium. J. Bacteriol. 114, 86–95 (1973)

    Google Scholar 

  • Pirt, S. J.: Principles of microbe and cell cultivation. Oxford, London, Edinburgh, Melbourne: Blackwell Sci. Publ. 1975

    Google Scholar 

  • Postgate, J. R.: Death in macrobes and microbes. Symp. Soc. Gen. Microbiol. 26, 1–18 (1976)

    Google Scholar 

  • Powell, E. O.: Growth rate of micro-organisms as a function of substrate concentration. In: Microbial physiology and continuous culture (E. O. Powell, C. G. T. Evans, R. E. Strange, D. W. Tempest, eds.), pp. 34–55. London: H.M.S.O. 1967

    Google Scholar 

  • Prokop, A., Ricina, J.: Chlorella pyrenoidosa 7-11-05 in batch and homogenous continuous culture under autotrophic conditions. Fol. Microbiol. 13, 353–361 (1968)

    Google Scholar 

  • Schmidt, G. L., Kamen, M. D.: Variable cellular composition of Chromatium in growing cultures. Arch. Mikrobiol. 73, 1–18 (1970)

    Google Scholar 

  • Schmidt, G. L., Kamen, M. D.: Control of chlorophyll synthesis in Chromatium vinosum. Arch. Mikrobiol. 76, 51–64 (1971)

    Google Scholar 

  • Schön, G.: Der Einfluß der Kulturbedingungen auf den ATP-, ADP-und AMP-Spiegel bei Rhodospirillum rubrum. Arch. Mikrobiol. 66, 348–364 (1969)

    Google Scholar 

  • Sistrom, W. R.: The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroides. J. gen. Microbiol. 28, 607–618 (1962)

    Google Scholar 

  • Stanier, R. Y., Doudoroff, M., Kunisawa, R., Contopoulou, R.: The role of organic substrates in bacterial photosynthesis. Proc. Natl. Acad. Sci. USA 45, 1246–1260 (1959)

    Google Scholar 

  • Tempest, D. W.: The continuous cultivation of micro-organisms. I. Theory of the chemostat. In: Methods in Microbiology (J. R. Norris, D. W. Ribbons, eds.), Vol. 2, pp. 259–277. New York: Academic Press 1970

    Google Scholar 

  • Trüper, H. G., Genovese, S.: Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnol. Oceanog. 13, 225–232 (1968)

    Google Scholar 

  • Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodoceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, J. Microbiol. Serol. 30, 225–238 (1964)

    Google Scholar 

  • Uffen, R. L.: Effect of low-intensity light on growth response and bacteriochlorophyll concentration in Rhodospirillum rubrum mutant C. J. Bacteriol. 116, 1086–1088 (1973)

    Google Scholar 

  • Van Baalen, C., Hoare, D. S., Brandt, E.: Heterotrophic growth of blue-green algae in dim light. J. Bacteriol. 105, 685–689 (1971)

    Google Scholar 

  • Van Gemerden, H.: On the ATP generation by Chromatium in darkness. Arch. Mikrobiol. 64, 118–124 (1968)

    Google Scholar 

  • Van Gemerden, H., Beeftink, H. H.: Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch. Microbiol. 119, 135–143 (1978)

    Google Scholar 

  • Van Liere, E.: On Oscillatoria agardhii Gomont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. Ph. D. Thesis, University of Amsterdam 1979

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gemerden, H. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125, 115–121 (1980). https://doi.org/10.1007/BF00403207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403207

Key words

Navigation