Skip to main content
Log in

Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Isotope feeding and inhibitor experiments were performed in order to elucidate the pathway common to polyamine and alkaloid biosynthesis in root cultures of Senecio vulgaris L. α-Difluoromethylarginine, a specific inhibitor of arginine decarboxylase, prevented completely the incorporation of radioactivity from [14C]arginine and [14C]ornithine into spermidine and the pyrrolizidine alkaloid senecionine N-oxide. In contrast, α-difluoromethylornithine, a specific ornithine-decarboxylase inhibitor, had no effect on the flow of radioactivity from labelled ornithine and arginine into polyamines and alkaloids. Thus, putrescine, the common precursor of polyamines and pyrrolizidine alkaloids, is exclusively derived via the arginine-agmatine route. Ornithine is rapidly transformed into arginine. Recycling of the guanido moiety of agmatine back to ornithine can be excluded. Putrescine and spermidine were found to be reversibly interconvertable and to excist in a highly dynamic state. In contrast, senecionine N-oxide did not show any turnover but accumulated as a stable metabolic product. In-vivo evidence is presented that the carbon flow from arginine into the polyamine/alkaloid pathway may be controlled by spermidine. The possible importance of the metabolic coupling of pyrrolizidine-alkaloid biosynthesis to polyamine metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DFMA:

D,l-α-difluoromethylarginine

DFMO:

D,l-α-difluoromethylornithine

FW:

fresh weight

References

  • Bale, N.M., Crout, D.H.G. (1975) Determination of the relative rates of incorporation of arginine and ornithine into retronecine during pyrrolizidine alkaloid biosynthesis. Phytochemistry 14, 2617–2622

    Google Scholar 

  • Birecka, H., Birecki, M., Frohlich, M.W. (1987) Evidence for arginine as the endogenous precursor of necines in Heliotropium. Plant Physiol 84, 42–46

    Google Scholar 

  • Birecka, H., Bitonti, A.J., McCann, P.P. (1985) Activities of arginine and ornithine decarboxylases in various plant species. Plant Physiol. 79, 515–519

    Google Scholar 

  • Boppré, M. (1986) Insect pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73, 17–26

    Google Scholar 

  • Cahill, R., Crout, D.H.G., Mitchell, M.B., Müller, U.S. (1980) Isoleucine biosynthesis and metabolism: stereochemistry of the formation of L-isoleucine and of its conversion into senecic and isatinic acid in Senecio species. J. Chem. Soc. Chem. Commun. 419–421

  • Craig, J.C., Purushothaman, K.K. (1970) An improved preparation of tertiary amine N-oxides. J. Org. Chem. 35, 1721–1722

    PubMed  Google Scholar 

  • Crout, D.H.G., Benn, M.H., Imaseki, H., Geissman, T.A. (1966) Pyrrolizidine alkaloids. The biosynthesis of seneciphyllic acid. Phytochemistry 5, 1–21

    Google Scholar 

  • Dann, A.T. (1960) Detection of N-oxides of pyrrolizidine alkaloids. Nature 186, 1051

    PubMed  Google Scholar 

  • Ehmke, A., v. Borstel, K., Hartmann, T. (1987) Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts and vacuoles from Senecio cell cultures. In: Plant vacuoles, their importance in solute compartmentation in cells and their application in plant biotechnology, pp. 301–304, Martin, B., ed., Plenum Press, New York

    Google Scholar 

  • Feirer, R.P., Mignon, G., Litvay, J.D. (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223, 1433–1435

    Google Scholar 

  • Flores, H.E., Filner, P. (1985a) Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Primary and secondary metabolism of plant cell cultures, pp. 174–185, Neumann, K.-H., Barz, W., Reinhard, E., eds. Springer, Berlin

    Google Scholar 

  • Flores, H.E., Filner, P. (1985b) Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. Plant Growth Regul. 3, 275–289

    Google Scholar 

  • Flores, H.E., Galston, A.W. (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69, 701–706

    Google Scholar 

  • Galston, A.W. (1983) Polyamines as modulators of plant development. BioScience 33, 382–388

    Google Scholar 

  • Grue-Sorensen, G., Spenser, I.D. (1982) The biosynthesis of retronecine. Can. J. Chem. 60, 643–662

    Google Scholar 

  • Grue-Sorensen, G., Spenser, I.D. (1983) Deuterium nuclear magnetic resonance spectroscopy as a probe of the stereochemistry of biosynthetic reactions: The biosynthesis of retronecine. J. Am. Chem. Soc. 105, 7401–7404

    Google Scholar 

  • Hartmann, T., Toppel, G. (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26, 1639–1643

    Google Scholar 

  • Hartmann, T., Zimmer, M. (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J. Plant Physiol. 122, 67–80

    Google Scholar 

  • Kallio, A., McCann, P.P., Bey, P. (1981) D, L-α-difluoromethylarginine: a potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylases. Biochemistry 20, 3163–3166

    PubMed  Google Scholar 

  • Khan, H.A., Robins, D.J. (1981) Pyrrolizidine alkaloids: evidence for N-(4-aminobutyl)-1,4-diamineobutane (homospermidine) as an intermediate in retronecine biosynthesis. J. Chem. Soc. Chem. Commun. 554–556

  • Khan, H.A., Robins, D.J. (1985) Pyrrolizidine alkaloid biosynthesis. Synthesis of 14C-labelled homospermidines and their incorporation into retronecine. J. Chem. Soc. Perkin Trans. I, 819–824

    Google Scholar 

  • Mattocks, A.R. (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, London

    Google Scholar 

  • Metcalf, B.W., Bey, P., Danzin, C., Jung, M.J., Casara, P., Vevert, J.P. (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (EC 4.1.1.17) by substrate and product analogues. J. Am. Chem. Soc. 100, 2551–2553

    Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

    Google Scholar 

  • Rana, J., Robins, D.J. (1983) Pyrrolizidine alkaloid biosynthesis; incorporation of 2H-labelled putrescine into retrorsine. J. Chem. Soc. Chem. Commun. 1222–1224

  • Rana, J., Robins, D.J. (1984) Stereochemistry of pyrrolizidine alkaloid biosynthesis: Incorporation of chiral [1-2H]putrescines into retrorsine. J. Chem. Soc. Chem. Commun. 517–519

  • Redmond, J.W., Tseng, A. (1979) High pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. J. Chromatogr. 170, 478–481

    Google Scholar 

  • Robins, D.J. (1982) The pyrrolizidine alkaloids. Progr. Chem. Nat. Prod. 41, 115–203

    Google Scholar 

  • Robins, D.J., Sweeney, J.R. (1979) Pyrrolizidine alkaloids: Evidence for the involvement of spermidine and spermine in the biosynthesis of retronecine, J. Chem. Soc. Chem. Commun. 120–121

  • Robins, D.J., Sweeney, J.R. (1981) Pyrrolizidine alkaloid biosynthesis: Incorporation of 14C-labelled precursors into retronecine. J. Chem. Soc. Perkin Trans. I, 3083–3086

    Google Scholar 

  • Robins, D.J., Sweeney, J.R. (1983) Pyrrolizidine alkaloid biosynthesis: derivation of retronecine from L-arginine and L-ornithine. Phytochemistry 22, 457–459

    Google Scholar 

  • Schneider, D. (1987) The strange fate of pyrrolizidine alkaloids. In: Perspectives in chemoreception and behavior, pp. 123–142, Chapman, R.F., Bernays, E.A., Stoffolano, J.G., eds. Springer, New York

    Google Scholar 

  • Slocum, R.D., Kaur-Sawhney, R., Galston, A.W. (1984) The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235, 283–303

    PubMed  Google Scholar 

  • Smith, L.W., Culvenor, C.C.J. (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod 44, 129–152

    PubMed  Google Scholar 

  • Smith, T.A. (1981) Amines. Biochem. Plants. 7, 249–268

    Google Scholar 

  • Smith, T.A. (1982) The function and metabolism of polyamines in higher plants. In: Plant growth substances-1982, pp. 463–472, Wareing, P.F., ed. Academic Press, New York

    Google Scholar 

  • Smith, T.A. (1985) Polyamines. Annu. Rev. Plant Physiol. 36, 117–143

    Article  Google Scholar 

  • Srivenugopal, K.S., Adiga, P.R. (1981) Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. J. Biol. Chem. 256, 9532–9541

    PubMed  Google Scholar 

  • Srivenupogal, K.S., Adiga, P.R. (1983) Putrescine synthase from Lathyrus sativus (grass pea) seedlings. Methods Enzymol. 94, 335–339

    Google Scholar 

  • Tiburcio, A.F., Galston, A.W. (1986) Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25, 107–110

    PubMed  Google Scholar 

  • Toppel, G., Witte, L., Riebesehl, B., v. Borstel, K., Hartmann, T. (1987) Alkaloid patterns and biosynthesic capacity of root cultures from some pyrrolizidine producing Senecio species. Plant Cell. Rep., 6, 466–469

    Google Scholar 

  • v. Borstel, K., Hartmann, T. (1986) Selective uptake of pyrrolizidine N-oxides by cell suspension cultures from pyrrolizidine alkaloid producing plants. Plant Cell. Rep. 5, 39–42

    Google Scholar 

  • Wagner, J., Danzin, C., Mamont, P. (1982) Reversed-phase ion-pair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J. Chromatogr. 227, 349–368

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, T., Sander, H., Adolph, R. et al. Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris . Planta 175, 82–90 (1988). https://doi.org/10.1007/BF00402884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402884

Key words

Navigation