Skip to main content
Log in

Modeling lipophilicity from the distribution of electrostatic potential on a molecular surface

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Molecular lipophilicity L is represented as a function of four surface electrostatic potential descriptors: L=f(BF +,BF -,BR +,BR -). Each B descriptor is computed from the products of elements of molecular surface area, Δsi, and the molecular electrostatic potential (MEP), V(r i), at the center of an area element: B = ∑i Δi V(ri). Octanol-water partition coefficients (Pow) are correlated with these four surface-MEP descriptors: log Pow=c0+c1BF ++c2BF -+c3BR ++c4BR -. Good correlations are obtained for homologous series of aliphatic alcohols, amines and acids, as well as for a set of aromatic compounds with various functional groups. Within this approach, we find that the molecular fragment contributions of surface-MEP descriptors to log P are approximately additive. We have computed the values for the following fragments:-CH2-,-CH3,-COOH,-OH and-NH2. These contributions can be used to estimate the molecular lipophilicity and partition coefficients of new compounds, without additional quantum-mechanical calculations. The proposed approach provides a reasonably accurate tool that can be useful in quantitative structure-activity relations for computer-aided rational drug design. More importantly, the correlation model is conceptually simpler than previous work in the literature and can be improved systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanford, C., The Hydrophobic Effect, Wiley, New York, NY, 1973.

    Google Scholar 

  2. Ben-Naim, A., Hydrophobic Interactions, Plenum Press, New York, NY, 1980.

    Google Scholar 

  3. Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London, 1992.

    Google Scholar 

  4. Forsman, J. and Jönsson, B., J. Chem. Phys., 101 (1994) 5116.

    Google Scholar 

  5. Head-Gordon, T., J. Am. Chem. Soc., 117 (1995) 501.

    Google Scholar 

  6. Némethy, G. and Scheraga, H.A., J. Chem. Phys., 36 (1962) 3401.

    Google Scholar 

  7. Watanabe, Y. and Mitsui, Y., Book of Abstracts of the 101st Annual Meeting of the Pharmacological Society of Japan, Kumamoto, Japan, April 1981, p. 198.

  8. Iwase, K., Katsuichiro, K., Hirono, S., Nakagawa, S. and Moriguchi, I., Chem. Pharm. Bull., 33 (1985) 2114.

    Google Scholar 

  9. Kamlet, M.J., Abboud, J.L.M. and Taft, R.W., Prog. Phys. Org. Chem., 13 (1981) 485.

    Google Scholar 

  10. Kamlet, M.J. and Taft, R.W., Acta Chim. Scand. Ser. B, 39 (1985) 611.

    Google Scholar 

  11. Kamlet, M.J., Doherty, R.M., Abboud, J.-M., Abraham, M.H., Marcus, Y. and Taft, R. W., Chem Tech, 16 (1986) 566.

    Google Scholar 

  12. Kamlet, M.J., Doherty, R.M., Abraham, M.H., Marcus, Y. and Taft, R.W., J. Phys. Chem., 92 (1988) 5244.

    Google Scholar 

  13. Taft, R.W., Abboud, J.-M., Kamlet, M.J. and Abraham, M.H., J. Solut. Chem., 14 (1985) 153.

    Google Scholar 

  14. Abraham, M.H., Doherty, R.M., Kamlet, M.J. and Taft, R.W., Chem. Br., 22 (1986) 551.

    Google Scholar 

  15. Kantola, A., Villar, H.O. and Loew, G., J. Comput. Chem., 12 (1991) 681.

    Google Scholar 

  16. Brinck, T., Murray, J.S. and Politzer, P., Mol. Phys., 76 (1992) 609.

    Google Scholar 

  17. Brinck, T., Murray, J.S. and Politzer, P., Int. J. Quantum Chem., Quantum Biol. Symp., 19 (1992) 57.

    Google Scholar 

  18. Brinck, T., Murray, J.S. and Politzer, P., J. Org. Chem., 58 (1993) 7070.

    Google Scholar 

  19. Murray, J.S., Lane, P., Brinck, T. and Politzer, P., J. Phys. Chem., 97 (1993) 5144.

    Google Scholar 

  20. Murray, J.S., Lane, P., Brinck, T., Paulsen, K., Grice, M.E. and Politzer, P., J. Phys. Chem., 97 (1993) 9369.

    Google Scholar 

  21. Murray, P., Brinck, T. and Politzer, P., J. Phys. Chem., 97 (1993) 13807.

    Google Scholar 

  22. Murray, J.S., Brinck, T., Lane, P., Paulsen, K. and Politzer, P., J. Mol. Struct. (THEOCHEM), 307 (1994) 55.

    Google Scholar 

  23. Klopman, G. and Iroff, L.D., J. Comput. Chem., 2 (1981) 157.

    Google Scholar 

  24. Klopman, G., Namboodiri, K. and Schochet, M., J. Comput. Chem., 6 (1985) 28.

    Google Scholar 

  25. Pearlman, R.S., In DunnIII, W.J., Block, J.H. and Pearlman, R.S. (Eds.), Partition Coefficient Determination and Estimation, Pergamon Press, New York, NY, 1986.

    Google Scholar 

  26. Bodor, N., Gabanyi, Z. and Wong, C.-K., J. Am. Chem. Soc., 111 (1989) 3783.

    Google Scholar 

  27. Bodor, N. and Huang, M.-J., J. Pharmacol. Sci., 81 (1992) 272.

    Google Scholar 

  28. Viswanadhan, V.N., Reddy, M.R., Bacquet, R.J. and Erion, M.D., J. Comput. Chem., 14 (1993) 1019.

    Google Scholar 

  29. Scrocco, E. and Tomasi, J., Top. Curr. Chem., 42 (1973) 95.

    Google Scholar 

  30. Politzer, P. and Truhlar, D.G. (Eds.) Chemical Applications of Atomic and Molecular Electrostatics, Plenum Press, New York, NY, 1981.

    Google Scholar 

  31. Abraham, M.H., Chem. Soc. Rev., 22 (1993) 73.

    Google Scholar 

  32. Rekker, R.F., The Hydrophobic Fragment Constants, Elsevier, New York, NY, 1977.

    Google Scholar 

  33. Hansch, C. and Leo, A., Substitute Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, NY, 1979.

    Google Scholar 

  34. Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  35. Ghose, A.K., Pritchett, A. and Crippen, G.M., J. Comput. Chem., 9 (1988) 80.

    Google Scholar 

  36. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Google Scholar 

  37. Fauchère, J.L., Quarendon, P. and Kaetterer, L., J. Mol. Graphics, 6 (1988) 203.

    Google Scholar 

  38. Croizet, F., Langlois, M.H., Dubost, J.P., Braquet, P., Audry, E., Dallet, Ph. and Colleter, J.C., J. Mol. Graphics, 8 (1990) 153.

    Google Scholar 

  39. Heiden, W., Moeckel, G. and Brickmann, J., J. Comput.-Aided Mol. Design, 7 (1993) 503.

    Google Scholar 

  40. Rozas, I., Du, Q. and Arteca, G.A., J. Mol. Graphics, 13 (1995) 98.

    Google Scholar 

  41. Connolly, M.L., Science, 221 (1983) 709.

    PubMed  Google Scholar 

  42. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  43. Connolly, M.L., J. Am. Chem. Soc., 107 (1985) 1118.

    Google Scholar 

  44. Pascual-Ahuir, J.-L., Silla, E., Tomasi, J. and Bonaccorsi, R., J. Comput. Chem., 8 (1987) 778.

    Google Scholar 

  45. Politzer, P., Lane, P., Murray, J.S. and Brinck, T., J. Phys. Chem., 96 (1992) 7938.

    Google Scholar 

  46. Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, E.S., Gomperts, R., Andrés, J.L., Raghavachari, K., Binkley, J.S., González, C., Martin, R.L., Fox, D.J., DeFrees, D.J., Baker, J., Stewart, J.J.P. and Pople, J.A., GAUSSIAN 92 (Revision E.2), Gaussian, Inc., Pittsburgh, PA, 1992.

    Google Scholar 

  47. Du, Q. and Arteca, G.A., J. Comput. Chem., in press.

  48. Gavezzotti, A., J. Am. Chem. Soc., 105 (1983) 5220.

    Google Scholar 

  49. Kauzmann, W., Adv. Protein Chem., 14 (1959) 37.

    Google Scholar 

  50. Leo, A., Hansch, C. and Elkins, D., Chem. Rev., 71 (1971) 525.

    Google Scholar 

  51. Du, Q., M.Sc. Thesis, Laurentian University, Sudbury, ON, Canada, 1995.

  52. Lipkowitz, K.B., Baker, B. and Larter, R., J. Am. Chem. Soc., 111 (1989) 7750.

    Google Scholar 

  53. Pleiss, M.A. and Grunewald, G.L., J. Med. Chem., 26 (1983) 1760.

    PubMed  Google Scholar 

  54. Vásquez, M., Némethy, G. and Scheraga, H.A., Macromolecules, 16 (1983) 1043.

    Google Scholar 

  55. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    PubMed  Google Scholar 

  56. Ooi, T., Oobatake, M., Némethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Q., Arteca, G.A. Modeling lipophilicity from the distribution of electrostatic potential on a molecular surface. J Computer-Aided Mol Des 10, 133–144 (1996). https://doi.org/10.1007/BF00402821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402821

Keywords

Navigation