Skip to main content
Log in

The petrology of chondrules in the sharps meteorite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Correlated petrographic and microprobe studies of 96 chondrules in the Sharps (H-3) chondrite indicate that chondritic material had a highly varied pre-accumulation history. Some chondrules, chiefly excentroradial and barred types, appear to be quenched droplets. Others, including most of the metal poor microporphyritic type, appear to have crystallized more slowly and are thought to be fragments of pre-existing rock. Although chondrules of all types show various effects similar to those produced by shock, such effects are most conspicuous in metal-rich chondrules and least conspicuous in spherical chondrules. It is concluded that shock was involved in the origin of chondrules and not simply a secondary effect.

It is proposed that chondrules were formed by shock processes during the accumulation of nebular dust into asteroid-sized bodies. Olivine-rich microporphyritic chondrules are thought to be due to complete melting of large masses of target material; metal-rich chondrules represent shock melting and partial vaporization; and spherical, pyroxene-rich chondrules are interpreted as condensates from shock-generated vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, L., Michaelis, H. von, Erlank, A., Willis, J.: Fractionation of some abundant lithophile element ratios in chondrites. In: P. M. Millman, ed. Meteorite research, p. 166–173. Dordrecht: Reidel 1969.

    Google Scholar 

  • Anders, E.: Origin, age and composition of meteorites. Space Sci. Rev. 3, 583–714 (1964).

    Article  Google Scholar 

  • Bence, A., Albee, A.: Empirical correction factors for the electron microanalyses of silicates and oxides. J. Geol. 76, 382–403 (1968).

    Google Scholar 

  • Binns, R.: Farmington meteorite: Cristobalite xenoliths and blackening. Science 156, 1222–1226 (1967a).

    Google Scholar 

  • —: Structure and evolution of non-carbonaceous chondritic meteorites. Earth Plan. Sci. Letters 2, 23–28 (1967b).

    Google Scholar 

  • —: Cognate xenoliths in chondritic meteorites: Exemples in Mezö-Madaras and Ghubara. Geochim. Cosmochim. Acta 32, 299–317 (1968).

    Google Scholar 

  • Bishop, J., Walter, L.: Major element compositions of individual chondrules. Meteoritical Society, 30th Ann. Meeting, Moffett Field, California, 1967.

  • Blander, M., Katz, J.: Condensation of primordial dust. Geochim. Cosmochim. Acta 31, 1025–1034 (1967).

    Google Scholar 

  • Cameron, A.: The accumulation of chondritic material. Earth Plan. Sci. Letters 2, 93–96, 1966.

    Google Scholar 

  • Carter, N., Raleigh, C., de Carli, P.: Deformation of olivine in stony meteorites. J. Geophys. Res. 73, 5439–5461 (1968).

    Google Scholar 

  • Chao, E.: Pressure and temperature histories of impact metamorphosed rocks based on petrographic observations. In: B. M. French and N. M. Short, eds. Shock metamorphism of natural materials, p. 135–158. New York: Mono Book Corp. 1968.

    Google Scholar 

  • Clarke, W., Laeter, J. de, Schwarcz, H., Shane, K.: Aluminium 26-magnesium 26 dating of feldspar in meteorites. J. Geophys. Res. 75, 448–462 (1970).

    Google Scholar 

  • Dodd, R.: Preferred orientation of chondrules in chondrites. Icarus 4, 308–316 (1965).

    Google Scholar 

  • —: Particle sizes in and compositions of unequilibrated ordinary chondrites. Trans. Amer. Geophys. Union 48, 159 (Abs.) (1967).

    Google Scholar 

  • - Recrystallized chondrules in the sharps (H-3) chondrite. Geochim. Cosmochim. Acta (in press), 1968.

  • —: Metamorphism of the ordinary chondrites: A review. Geochim. Cosmochim. Acta 33, 161–203 (1969a).

    Google Scholar 

  • —: Petrofabric analysis of a large microporphyritic chondrule in the Parnallee meteorite. Mineral. Mag. 37, 230–237 (1969b).

    Google Scholar 

  • —: Calcaluminous insets in olivine of the sharps (H-3) chondrite. Trans. Amer. Geophys. Union 51, 341 (abs.) (1970).

    Google Scholar 

  • - Calcium in chondritic olivine. H. H. Hess Memorial Volume, Geol. Soc. America, in press.

  • —, Schmus, W. van: Significance of the unequilibrated ordinary chondrites. J. Geophys. Res. 70, 3801–3811 (1965).

    Google Scholar 

  • — Koffman, D.: A survey of the unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 31, 921–951 (1967).

    Google Scholar 

  • — Marvin, U.: Significance of iron-rich silicates in the Mezö-Madaras chondrite. Am. Mineralogist 51, 1171–1191 (1966).

    Google Scholar 

  • —, Teleky, L.: Preferred orientation of olivine crystals in porphyritic chondrules. Icarus 6, 407–416 (1967).

    Google Scholar 

  • Duke, M., Woo, C., Bird, M., Sellers, G., Finkelman, R.: Lunar soil: Size distribution and mineralogical constituents. Science 167, 648–650 (1970).

    Google Scholar 

  • Fisher, R.: Maximum size, median diameter, and sorting of tephra. J. Geophys. Res. 69, 341–355 (1964).

    Google Scholar 

  • Fredriksson, K.: Chondrules and the meteorite parent bodies. Trans. N.Y. Acad. Sci., Series 11, 25, 756–769 (1963).

    Google Scholar 

  • —: The Sharps chondrite-new evidence on the origin of chondrules and chondrites. In: P. M. Millman, ed. Meteorite research, p. 155–165. Dordecht: Reidel 1969.

    Google Scholar 

  • French, B., Hartung, J., Short, N., Dietz, R.: Tenoumer crater, Mauretania. J. Geophys. Res. 75, 4396–4406 (1970).

    Google Scholar 

  • Hohenberg, C., Podosek, F., Reynolds, J.: Xenon-iodine dating: Sharp isochronism in chondrites. Science 156, 233–236 (1967).

    Google Scholar 

  • Keil, K., Fredriksson, K.: The iron, magnesium, and calcium contents of coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 69, 3487–3515 (1964).

    Google Scholar 

  • Keil, K., Mason, B., Wiik, H., Fredriksson, K.: The Chainpur meteorite. Am. Museum Novitates No. 2173 (1964).

  • Kuhi, L.: Mass loss from T-Tauri stars. Astrophys. J. 140, 1409–1433 (1964).

    Google Scholar 

  • Larimer, J., Anders, E.: Chemical fractionation in meteoerites 11. Abundance patterns and their interpretation. Geochim. Cosmochim. Acta 1239–1270, 1967.

  • Mason, B.: Meteoerites. New York: Wiley 1961.

    Google Scholar 

  • Merrill, G.: On chondrules and chondritic structure in meteorites. Proc. Nat. Acad. Sci. 6, 449–472 (1920).

    Google Scholar 

  • Podosek, F.: Dating of meteorites by the high-temperature release of iodine-correlated Xe129. Geochim. Cosmochim. Acta 34, 341–366 (1969).

    Google Scholar 

  • Reid, A., Fredriksson, K.: Chondrules and chondrites. In: Ph. H. Abelson, ed. Researches in geochemistry, vol. II, p. 170–203. New York: Wiley 1967.

    Google Scholar 

  • Ringwood, A.: Chemical and genetic relationships among meteorites. Geochim. Cosmochim. Acta 24, 159–197 (1961).

    Article  Google Scholar 

  • —: Genesis of chondritic meteorites. Rev. Geophys. 4, 113–175 (1966).

    Google Scholar 

  • Schmitt, R., Smith, R., Goles, G.: Abundances of Na, Sc, Cr, Mn, Fe, Co, and Cu in 218 individual meteoritic chondrules via activation analysis. J. Geophys. Res. 70, 2419–2444 (1965).

    Google Scholar 

  • Schmus, W. van: Plymict structure of the Mexö-Madaras chondrite, Geochim. Cosmochim. Acta 31, 2027–2042 (1967).

    Google Scholar 

  • —: The mineralogy and petrology of chondritic meteorites. Earth-Sci. Rev. 5, 145–184 (1969).

    Google Scholar 

  • —, Ribbe, P.: The composition and structural state of feldspar from chondritic meteorites. Geochim. Cosmochim. Acta 32, 1327–1342 (1968).

    Google Scholar 

  • Simkin, T., Smith, J.: Minor-element distribution in olivine. J. Geol. 78, 304–325 (1970).

    Google Scholar 

  • Smith, J.: X-ray emission microanalysis of rock-forming minerals. 11. Olivines. J. Geol. 74, 1–16 (1966).

    Google Scholar 

  • Suess, H.: Chemie der Planeten und Meteoriten-bildung. Z. Elektrochem. 53, 237–241 (1949).

    Google Scholar 

  • Urey, H.: The planets. New Haven: Yale University Press 1952.

    Google Scholar 

  • Walter, L.: Tektite compositional trands and experimental vapor fractionation of silicates. Geochim. Cosmochim. Acta 31, 2043–2064 (1967).

    Google Scholar 

  • —: The major-element composition of individual chondrules of the Bjurböle meteorite. In: P. M. Millman, ed. Meteorite research, p. 191–205. Dordrecht: Reidel 1969.

    Google Scholar 

  • Whipple, F.: Chondrules: Suggestion concerning the origin. Science 153, 54–56 (1966).

    Google Scholar 

  • Wlotzka, F.: On the formation of chondrules and metal particles by “shock melting”. In: P. M. Millman, ed., Meteorite research, p. 174–184. Dordrecht: Reidel 1969.

    Google Scholar 

  • Wood, J.: On the origin of chondrules and chondrites. Icarus 2, 152–180, 1963.

    Google Scholar 

  • —: Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6, 1–49 (1967).

    Google Scholar 

  • —: Meteorites and the origin of planets, 117 p. New York: McGraw-Hill 1968.

    Google Scholar 

  • Ziebold, T.: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858–861 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, R.T. The petrology of chondrules in the sharps meteorite. Contr. Mineral. and Petrol. 31, 201–227 (1971). https://doi.org/10.1007/BF00399651

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399651

Keywords

Navigation