Skip to main content
Log in

Post-translational modifications of lantibiotics

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Several newly reported post-translational modification reactions are involved in lantibiotic biosynthesis. A short overview of the present knowledge on the post-translational modifications and on the enzymes involved in lantibiotic biosynthesis is given. The oxidative decarboxylation of the epidermin precursor peptide EpiA is described in detail. The FMN-containing oxidoreductase EpiD is involved in the formation of the C-terminal S-[(Z)-2-aminovinyl]-D-cysteine residue of epidermin: under reducing conditions the side chain of the C-terminal cysteine residue of EpiA is converted to an enethiol. EpiD has no absolute substrate specificity and can be used for modification of peptides having the C-terminal consensus motif [V/I/L/(M)/F/Y/W]-[A/S/V/T/C/(I/L)]-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dha:

2,3-didehydroalanine

Dhb:

(Z)-2,3-didehydrobutyrine

ES-MS:

Electrospray Mass Spectrometry

FAD:

Flavin Adenine Dinucleotide

FMN:

Flavin Mononucleotide

MBP:

Maltose-Binding Protein

TFA:

TrifluoroAcetic Acid

TLC:

Thin-Layer Chromatography

References

  • Allgaier H, Jung G, Werner RG, Schneider U & Zähner H (1985) Elucidation of the structure of epidermin, a ribosomally synthesized, tetracyclic heterodetic polypeptide antibiotic. Angew. Chem. Int. Ed. Engl. 24: 1051–1053

    Article  Google Scholar 

  • Allgaier H, Jung G, Werner RG, Schneider U & Zähner H (1986) Epidermin: sequencing of a heterodet tetracyclic 21-peptide amide antibiotic. Eur. J. Biochem. 160: 9–22

    PubMed  Google Scholar 

  • Augustin J, Rosenstein R, Kupke T, Schneider U, Schnell N, Engelke G, Entian K-D & Götz F (1991) Identification of epidermin biosynthetic genes by complementation studies and heterologous expression. In: Jung G & Sahl H-G (Ed) Nisin and novel lantibiotics (pp 277–286). Escom, Leiden

    Google Scholar 

  • Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian K-D & Götz F (1992) Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur. J. Biochem. 204: 1149–1154

    PubMed  Google Scholar 

  • Banerjee S & Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508–9514

    Google Scholar 

  • Bayer A, Freund S, Nicholson G & Jung G (1993) Posttranslational backbone modifications in the ribosomal biosynthesis of the glycine-rich antibiotic microcin B17. Angew. Chem. Int. Ed. Engl. 32: 1336–1339

    Article  Google Scholar 

  • Beck-Sickinger AG & Jung G (1991) Synthesis and conformational analysis of lantibiotic leader-, pro- and pre-peptides. In: Jung G & Sahl H-G (Eds) Nisin and novel lantibiotics (pp 218–230). Escom, Leiden

    Google Scholar 

  • Beck-Sickinger AG & Jung G (1993) Synthesis and conformational-analysis by CD spectroscopy of lantibiotic leader, pro-peptides and pre-peptides. Liebigs Annalen der Chemie 1125–1131

  • Biemann K (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods. Enzymol. 193: 455–479

    PubMed  Google Scholar 

  • Bierbaum G, Reis M, Szekat C & Sahl H-G (1994) Construction of an expression system for engineering of the lantibiotic Pep5. Appl. Environ. Microbiol. 60: 4332–4338

    PubMed  Google Scholar 

  • Breil BT, Ludden PW & Triplett EW (1993) DNA Sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J. Bacteriol. 175: 3693–3702

    PubMed  Google Scholar 

  • Buchman GW, Banerjee S & Hansen JN (1988) Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263: 16260–16266

    PubMed  Google Scholar 

  • Bycroft BW (1969) Structural relationships in microbial peptides. Nature 224: 595–597

    PubMed  Google Scholar 

  • Bycroft BW, Chan WC & Roberts GCK (1991) Synthesis and characterization of pro- and prepeptides related to nisin and subtilin. In: Jung G & Sahl H-G (Eds) Nisin and novel lantibiotics (pp 204–217). Escom, Leiden

    Google Scholar 

  • Chan WC, Bycroft BW, Lian L-X & Roberts GCK (1989) Isolation and characterization of two degradation products derived from the peptide antibiotic nisin. FEBS Letters 252: 29–36

    Article  Google Scholar 

  • Chan WC, Bycroft BW, Leyland ML, Lian L-Y & Roberts GCK (1993) A novel post-translational modification of the peptide antibiotic subtilin: isolation and characterization of a natural variant from Bacillus subtilis ATCC 6633. Biochem. J. 291: 23–27

    PubMed  Google Scholar 

  • Davagnino J, Herrero M, Furlong D, Moreno F & Kolter R (1986) The DNA replication inhibitor microcin B17 is a forty-three amino acid protein containing sixty percent glycine. Proteins 1: 230–238

    PubMed  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Hammelmann M & Entian KD (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58: 3730–3743

    PubMed  Google Scholar 

  • Fredenhagen A, Märki F, Fendrich G, Märki W, Gruner J, Oostrum Jv, Raschdorf F & Peter HH (1991) Duramycin B and C, two new lanthionine-containing antibiotics as inhibitors of phospholipase A2, and structural revision of duramycin and cinnamycin. In: Jung G & Sahl H-G (Eds) Nisin and novel lantibiotics (pp 131–140). Escom, Leiden

    Google Scholar 

  • Genet R, Denoyelle C & Ménez A (1994) Purification and partial characterization of an amino acid α,β-dehydrogenase. L-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. J. Biol. Chem. 269: 18177–18184

    PubMed  Google Scholar 

  • Genilloud O, Moreno F & Kolter R (1989) DNA sequence, products, and transcriptional pattern of the genes involved in production of the DNA replication inhibitor microcin B17. J. Bacteriol. 171: 1126–1135

    PubMed  Google Scholar 

  • Ghisla S & Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur. J. Biochem. 181: 1–17

    PubMed  Google Scholar 

  • Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR & Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7335–7344

    PubMed  Google Scholar 

  • Grabowski R & Buckel W (1991) Purification and properties of an iron-sulfur-containing and pyridoxal-phosphate-independent L-serine dehydratase from Peptostreptococcus asaccharolyticus. Eur. J. Biochem. 199: 89–94

    PubMed  Google Scholar 

  • Grabowski R, Hofmeister AEM & Buckel W (1993) Bacterial l-serine dehydratases: a new family of enzymes containing iron-sulfur clusters. Trends Biochem. Sci. 18: 297–300

    Article  PubMed  Google Scholar 

  • Gross E & Morell JL (1967) The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. J. Am. Chem. Soc. 89: 2791–2792

    PubMed  Google Scholar 

  • Gross E & Morell JL (1969) Dehydroalanyl-lysine: identical COOH-terminal structures in peptide antibiotics nisin and subtilin. Proc. Natl. Acad. Sci. USA 62: 952–956

    PubMed  Google Scholar 

  • Gross E & Morell JL (1971) The structure of nisin. J. Am. Chem. Soc. 93: 4634–4635

    PubMed  Google Scholar 

  • Gross E & Kiltz HH (1973) The number and nature of α,β-unsaturated amino acids in subtilin. Biochem. Biophys. Res. Commun. 50: 559–565

    PubMed  Google Scholar 

  • Heck SD, Siok CJ, Krapcho KJ, Kelbaugh PR, Thadeio PF, Welch MJ, Williams RD, Ganong AH, Kelly ME, Lanzetti AJ, Gray WR, Phillips D, Parks TN, Jackson H, Ahlijanian MK, Saccomano NA & Volkmann RA (1994) Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin. Science 266: 1065–1068

    PubMed  Google Scholar 

  • Ingram LC (1969) Synthesis of the antibiotic nisin: Formation of lanthionine and β-methyllanthionine. Biochim. Biophys. Acta 184: 216–219

    PubMed  Google Scholar 

  • Ingram L (1970) A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. Acta 224: 263–265

    PubMed  Google Scholar 

  • Jack RW, Carne A, Metzger J, Stefanovic S, Sahl H-G, Jung G & Tagg J (1994) Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur. J. Biochem. 220: 455–462

    PubMed  Google Scholar 

  • Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian K-D & Götz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur. J. Biochem. 177: 53–59

    PubMed  Google Scholar 

  • Kellner R, Jung G, Josten M, Kaletta C, Entian K-D & Sahl H-G (1989) Pep5, a new lantibiotic: structure elucidation and amino acid sequence of the propeptide. Angew. Chem. Int. Ed. Engl. 28: 616–619

    Article  Google Scholar 

  • Kessler H, Steuernagel S, Will M, Jung G, Kellner R, Gillessen D & Kamiyama T (1988) The structure of the polycyclic nonadecapeptide Ro09-0198. Helv. Chim. Acta 71: 1924–1929

    Google Scholar 

  • Klein C, Kaletta C, Schnell N & Entian K-D (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132–142

    PubMed  Google Scholar 

  • Kleinkauf H & vonDöhren H (1987) Biosynthesis of peptide antibiotics. Annu. Rev. Microbiol. 41: 259–289

    Article  PubMed  Google Scholar 

  • Kogler H, Bauch M, Fehlhaber H-W, Griesinger C, Schubert W & Teetz V (1991) NMR-spectroscopic investigation on mersacidin. In: Jung G & Sahl H-G (Eds) Nisin and novel lantibiotics (pp 159–170). Escom, Leiden

    Google Scholar 

  • Kuipers OP, Rollema HS, Yap WMGJ, Boot HJ, Siezen RJ & deVos WM (1992) Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J. Biol. Chem. 267: 24340–24346

    PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ & deVos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem. 216: 281–291

    PubMed  Google Scholar 

  • Kupke T, Stevanovic S, Sahl H-G & Götz F (1992) Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J. Bacteriol. 174: 5354–5361

    PubMed  Google Scholar 

  • Kupke T, Stevanovic S, Ottenwälder B, Metzger JW, Jung G & Götz F (1993) Purification and characterization of EpiA, the peptide substrate for posttranslational modifications involved in epidermin biosynthesis. FEMS Lett. 112: 43–48

    Article  Google Scholar 

  • Kupke T, Kempter C, Gnau V, Jung G & Götz F (1994) Mass spectroscopic analysis of a novel enzymatic reaction: oxidative decarboxylation of the lantibiotic precursor peptide EpiA catalyzed by the flavoprotein EpiD. J. Biol. Chem. 269: 5653–5659

    PubMed  Google Scholar 

  • Kupke T, Kempter C, Jung G & Götz F (1995) Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD: determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J. Biol. Chem. 270: 11282–11289

    Article  PubMed  Google Scholar 

  • Langer M, Reck G, Reed J & Retey J (1994) Identification of serine-143 as the most likely precursor of dehydroalanine in the activesite of histidine ammonia-lyase — a study of the overexpressed enzyme by site-directed mutagenesis. Biochemistry 33: 6462–6467

    PubMed  Google Scholar 

  • Liu W & Hansen JN (1993) The antimicrobial effect of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanisms. Appl. Environ. Microbiol. 59: 648–651

    PubMed  Google Scholar 

  • Metzger JW, Kempter C, Wiesmüller K-H & Jung G (1994) Electrospray mass spectrometry and tandem mass spectrometry of synthetic multicomponent peptide mixtures: determination of composition and purity. Anal. Biochem. 219: 261–277

    Article  PubMed  Google Scholar 

  • Meyer C, Bierbaum G, Heidrich C, Reis M, Süling J, Iglesias-Wind MI, Kempter C, Molitor E & Sahl H-G (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC: evidence for a role of PepC in thioethher formation. Eur. J. Biochem. 232: 478–489

    PubMed  Google Scholar 

  • Meyer HE, Heber M, Eisermann B, Korte H, Metzger JW & Jung G (1994) Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal. Biochem. 223: 185–190

    Article  PubMed  Google Scholar 

  • Mor A, Amiche M & Nicolas P (1992) Enter a new post-translational modification: d-amino acids in gene encoded peptides. Trends Biochem. Sci. 17: 481–485

    Article  PubMed  Google Scholar 

  • Ottenwälder B, Kupke T, Brecht S, Gnau V, Metzger J, Jung G & Götz F (1995) Isolation and characterization of geretically engineered gallidermin and epidermin analogs. Appl. Environ. Microbiol. 61: 3894–3903

    PubMed  Google Scholar 

  • Peschel A, Augustin J, Kupke T, Stevanovic S & Götz F (1993) Regulation of epidermin biosynthetic genes by EpiQ. Mol. Microbiol. 9: 31–39

    PubMed  Google Scholar 

  • Piard J-C, Kuipers OP, Rollema HS, Desmazeaud MJ & deVos W (1993) Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J. Biol. Chem. 268: 16361–16368

    PubMed  Google Scholar 

  • Richter K, Egger R & Kreil G (1987) D-Alanine in the frog skin peptide demorphin is derived from L-alanine in the precursor. Science 238: 200–202

    PubMed  Google Scholar 

  • Riggs PD (1990) Expression and purification of maltose-binding protein fusions. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (Eds) Current protocols in molecular biology (pp 16.6.1–16.6.12). John Wiley and Sons, Inc., New York

    Google Scholar 

  • Sahl H-G, Reis M, Eschbach M, Szekat C, Beck-Sickinger AG, Metzger J, Stevanovic S & Jung G (1991) Isolation of Pep5 prepeptides in different stages of modification. In: Jung G & Sahl H-G (Ed) Nisin and novel lantibiotics (pp 332–346). Escom, Leiden

    Google Scholar 

  • Scaloni A, Barra D & Bossa F (1994) Sequence analysis of dehydroamino acid-containing peptides. Anal. Biochem. 218: 226–228

    Article  PubMed  Google Scholar 

  • Schnell N, Entian K-D, Schneider U, Götz F, Zähner H, Kellner R & Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276–278

    Article  PubMed  Google Scholar 

  • Schnell N, Engelke G, Augustin J, Rosenstein R, Ungermann V, Götz F & Entian K-D (1992) Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur. J. Biochem. 204: 57–68

    PubMed  Google Scholar 

  • Skaugen M, Nissen-Meyer J, Jung G, Stevanovic S, Sletten K, Mortvedt Abildgaard CI & Nes IF (1994) In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. J. Biol. Chem. 269: 27183–27185

    PubMed  Google Scholar 

  • Stachelhaus T & Marahiel MA (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol. Lett. 125: 3–14

    Article  PubMed  Google Scholar 

  • Tabor S (1990) Expression using the T7 RNA polymerase/promoter system. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (Eds) Current protocols in molecular biology (pp 16.2.1–16.2.11). John Wiley and Sons, Inc., New York

    Google Scholar 

  • Takai K & Hayaishi O (1987) Purification and properties of tryptophan side chain oxidase types I and II from Pseudomonas. Methods. Enzymol. 142: 195–217

    PubMed  Google Scholar 

  • Toogood PL (1993) Model studies of lantibiotic biogenesis. Tetrahedron Letters 34: 7833–7836

    Article  Google Scholar 

  • Van deKamp M, Horstink LM, van denHooven HW, Konings RNH, Hilbers CW, Frey A, Sahl H-G, Metzger JW & van deVen FJM (1995) Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Eur. J. Biochem. 227: 757–771

    PubMed  Google Scholar 

  • Van derMeer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP & deVos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol 175: 2578–2588

    PubMed  Google Scholar 

  • Van derMeer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP & deVos WM (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J. Biol. Chem. 269: 3555–3562

    PubMed  Google Scholar 

  • Wakamiya T, Ueki Y, Shiba T, Kido Y & Motoki Y (1985) The structure of ancovenin, a new peptide inhibitor of angiotensin I converting enzyme. Tetrahedron Lett. 26: 665–668

    Article  Google Scholar 

  • Wakamiya T, Fukase K, Naruse N, Konishi M & Shiba T (1988) Lanthiopeptin, a new peptide effective against herpes simplex virus: structural determination and comparison with Ro 09-0198, an immunopotentiating peptide. Tetrahedron Lett. 29: 4771–4772

    Article  Google Scholar 

  • Weil HP, Beck-Sickinger AG, Metzger J, Stevanovic S, Jung G, Josten M & Sahl H-G (1990) Biosynthesis of the lantibiotic Pep 5: Isolation and characterization of a prepeptide containing dehydroamino acids. Eur. J. Biochem. 194: 217–223

    PubMed  Google Scholar 

  • Yan SCB, Grinnell BW & Wold F (1989) Post-translational modifications of proteins: some problems left to solve. Trends. Biochem. Sci. 14: 264–268

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupke, T., Götz, F. Post-translational modifications of lantibiotics. Antonie van Leeuwenhoek 69, 139–150 (1996). https://doi.org/10.1007/BF00399419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399419

Key words

Navigation