Skip to main content
Log in

Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of 15N enrichment of the different tissue zones and the xylem sap of 15N2-pulse-fed coralloid roots of M. riedlei showed earlier 15N incorporation into Gln than into Cit, and a subsequent net decline in the 15N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the 15N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed 14CO2 in darkness showed 14C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated 14CO2 into Cit. The 14C of Cit was restricted to the carbamyl-C. Comparable 15N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major 14C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ala:

alanine

Asp:

aspartic acid

Cit:

citrulline

Gln:

glutamine

Glu:

glutamic acid

Orn:

ornithine

References

  • Bergersen, F.J., Kennedy, G.S., Wittman, W. (1965) Nitrogen fixation in the coralloid roots of Macrozamia communis (L.) Johnson. Aust. J. Biol. Sci. 18, 1135–1142

    Google Scholar 

  • Bremner, J.M. (1965) Total nitrogen. In: Methods of soil analysis, pp. 1215–1219, Black, C.A., Evans, D.D., White, J.L., Emsinger, L.E., Clark, F.E., Dinauer, R.C., eds. Madison, Wis., USA, Am. Soc. Agron.

    Google Scholar 

  • Carr, N.G. (1983) Biochemical aspects of heterocyst differentiation and function. In: Photosynthetic prokaryotes: cell differentiation and function, pp. 265–280, Papageorgiou, G.C., Packer, L., eds. Elsevier Science Publ., New York

    Google Scholar 

  • Dixon, R.O.D., Wheeler, C.T. (1986) Nitrogen fixation in plants. Blackie & Son. Glasgow London

    Google Scholar 

  • Grilli Caiola, M. (1975) A light and electron microscopic study of blue-green algae growing in the coralloid roots of Encephalartos altensteinii and in culture. Phycologia 14, 25–33

    Google Scholar 

  • Lindblad, P., Bergman, B. (1986) Glutamine synthetase: activity and localization in cyanobacteria of the cycads Cycas revoluta and Zamia skinneri. Planta 169, 1–7

    Google Scholar 

  • Lindblad, P., Bergman, B., von Hofsten, A., Hallbom, L., Nylund, J.E. (1985) The cyanobacterium-Zamia symbiosis: an ultrastructural study. New Phytol. 101, 707–716

    Google Scholar 

  • Lindblad, P, Rai, A.N., Bergman, B. (1987) The Cycas revoluta-Nostoc symbiosis: enzyme activities ofnitrogen and carbon metabolism in the cyanobiont. J. Gen. Microbiol. 133, 1695–1699

    Google Scholar 

  • Ofori, F., Pate, J.S., Stern, W.R. (1987) Evaluation of N2 fixation and nitrogen economy of a maize:cowpea intercrop system using 15N dilution methods. Plant Soil 102, 149–160

    Google Scholar 

  • Pate, J.S. (1976) Transport in symbiotic sytems fixing nitrogen. In: Transport in plants. Encyclopedia of Plant Physiology, N.S., vol. 2: pt. B, Tissues and organs, pp. 278–303, Lüttge, U., Pitman, M.G., eds. Springer, Heidelberg

    Google Scholar 

  • Pate, J.S. (1989) Synthesis transport and utilization of products of symbiotic N fixation. In: Proc. Int. Symp. on Plant Nitrogen Metabolism, Ames, Ia., Phytochemical Society of North America (in press)

  • Pate, J.S., Gunning, B.E.S.,(1972) Transfer cells. Annu. Rev. Plant Physiol. 23, 173–196

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S., Briarty, L.G. (1969) Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85, 11–34

    Google Scholar 

  • Pate, J.S., Rasins, E., Rullo, J., Kuo, J. (1986) Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747–770

    Google Scholar 

  • Peoples, M.B., Pate, J.S., Atkins, C.A., Bergersen, F.J. (1986) Nitrogen nutrition and xylem sap composition of peanut (Arachis hypogaea L. cv. Virginia bunch). Plant Physiol. 82, 946–951

    Google Scholar 

  • Perraju, B.T.V.V., Rai, A.N., Kumar, A.P., Singh, H.N. (1986) Cycas circinalis-Anabaena cycadae symbiosis: photosynthesis and the enzymes of nitrogen and hydrogen metabolism in symbiotic and cultured Anabaena cycadae. Symbiosis 1, 239–250

    Google Scholar 

  • Porter, L.K., O'Deen, W.A. (1977) Apparatus for preparing nitrogen from ammonium chloride for nitrogen-15 determinations. Anal. Chem. 49, 514–516

    Google Scholar 

  • Renaut, J., Sasson, A., Pearson, H.W., Stewart, W.D.P. (1975) Nitrogen-fixing algae in Morocco. In: Nitrogen fixation by free-living microorganisms (International Biological Program, Handbook No. 6), pp. 229–246, Stewart, W.D.P., ed. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Schubert, K. (1986) Products of biolotical nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu. Rev. Plant Physiol. 37, 539–574

    Google Scholar 

  • Trijbels, F., Vogels, G.D. (1966) Degradation of allantoin by Pseudomonas acidovorans. Biochim. Biophys. Acta 113, 292–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pate, J.S., Lindblad, P. & Atkins, C.A. Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176, 461–471 (1988). https://doi.org/10.1007/BF00397652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397652

Key words

Navigation