Skip to main content
Log in

Mammalian renal modifications in dry environments

  • Research Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

The literature on the role of the kidney and renal morphological modifications in places of limited water supply is reviewed. The anatomical structures for urine concentration found in animals living in desert or arid environments, although not all occurring in one particular animal, are wide medullae, long loops of Henle, long proximal tubules, long collecting tubules, small renal corpuscles, extension of the renal pelvis, well developed elongated papillae, occurrence of giant vascular bundles, specialized ultrastructure of Henle's loops, epithelial changes in the collecting tubule, zonation of the vasa recta and peculiarity of the arterial supply to the kidney. The renal renin content is moderately high in these species. The renin-angiotensin-aldosterone system is very active, retaining Na+ with water. The urine is concentrated at the expense of other electrolytes. Both the renal blood and urinary flow rates are lower than in species with access to unlimited water supply. The juxtaglomerular apparatus components are topographically intimate for effective tubuloglomerular autoregulation of renal blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbdallahM. A. & AbdallahO., 1979. Morphometric observations on the kidney of the camel (Camelus dromedarius) Journal of Anatomy, 129, 45–50

    Google Scholar 

  • AlcornD., CheshireG. R., CoghlanJ. P. & RyanG. B., 1984. Peripolar cell hypertrophy in the renal juxtaglomerular region of new born sheep. Cell Tissue Research, 236, 197–202

    Google Scholar 

  • BalmentR. J. & CarrickS., 1985. Endogenous renin-angiotensin system and drinking behaviour in flounder. American Journal of Physiology, 248, RI57-R160

    Google Scholar 

  • BarrettJ. M., KrizW., KaisslingB. & DeRouffignacC., 1978a. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney I. The limb of Henle of short-looped nephrons. American Journal of Anatomy, 151, 487–497

    Google Scholar 

  • BarrettJ. M., KrizW., KaisslingB. & DeRouffignacC., 1978b. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney. II. The thin limbs of Henle of long-looped nephrons. American Journal of Anatomy, 151, 499–514

    Google Scholar 

  • BeeuwkesIIIR., 1971. Efferent vascular patterns and early vascular tubular relations in the dog kidney. American Journal of Physiology, 222, 1361–1374

    Google Scholar 

  • BeeuwkesIIIR., 1980. The vascular organization of the kidney. Annual Review of Physiology, 42, 521–542

    Google Scholar 

  • BeeuwkesIIIR. & BoventreJ. V., 1975. Tubular organization and vascular tubular relations in the dog kidney. American Journal of Physiology, 229, 695–713

    Google Scholar 

  • BeliveauR. & BrunetteM. G., 1984. The renal brush border membrane in man, protein pattern, inorganic phosphate binding and transport. Renal Physiology, Basel, 7, 65–71

    Google Scholar 

  • BerlinerR. W., 1976. The concentrating mechanisms of the renal medulla. Kidney International, 9, 214–222

    Google Scholar 

  • BulgerR. E. & DobyanD. C., 1982. Recent advances in renal morphology. Annual Review of Physiology, 44, 147–179

    Google Scholar 

  • BulgerR. E. & DobyanD. C., 1983. Recent structure function relationship in normal and injured mammalian kidneys. Anatomical Record, 205, 1–11

    Google Scholar 

  • ChoshniakI., WitternbergC., RosenfeldJ. & ShkolnikA., 1984. Rapid rehydration and kidney function in the black bedouin goat. Physiological Zoology, 57, 573–579

    Google Scholar 

  • CormanB. & DiStephanoA., 1983. Does water drag solutes through kidney tubules? Pflugers Archiv, 397, 35–41

    Google Scholar 

  • ErikssonL., 1972. Renal corticopapillary concentration gradient in calves. Acta Veterinaria Scandinavica, 13, 197–205

    Google Scholar 

  • FaarupP., 1965. On the morphology of the juxtaglomerular apparatus. Anatomical Record, 60, 20–38

    Google Scholar 

  • GrahameT., 1944. The ureter and arterial blood supply to the kidney of the camel. British Veterinary Journal, 100, 257–261

    Google Scholar 

  • GranthamJ. J., IrishIIIJ. M. & HallD. A., 1978. Studies on isolated renal tubules in vitro. Annual Review of Physiology, 40, 249–277

    Google Scholar 

  • HartroftP. M. & HartroftW. S., 1953. Studies on the renal juxtaglomerular cell. Variation produced by NaCl and DOCA. Journal of Experimental Medicine, 97, 415–428

    Google Scholar 

  • HollenbergN. K., 1984. The renin-angiotensin system and sodium homeostasis. Journal of Cardiovascular Pharmacology, 6, S17-S183

    Google Scholar 

  • ImaiM. & KokkoJ. P., 1974. Sodium chloride, urea and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. Journal of Clinical Investigation, 53, 392–402

    Google Scholar 

  • ImbsJ. L., SchmidtM., GiesenE. M. & SchwatzJ., 1984. Is the reninangiotensin system involved in urinary concentration mechanisms? Journal of Physiology, Paris, 79, 481–484

    Google Scholar 

  • JacobsonJ. R., 1981. Functional segmentation of the mammalian nephron. American Journal of Physiology, 241, F203-F218

    Google Scholar 

  • JohnsonK. G., 1971. Renal function in Bos taurus and Bos indicus cross bred cows under conditions of normal hydration and mild dehydration. Research in Veterinary Science, 12, 438–447

    Google Scholar 

  • JonesW. R. & O'MorchoeC. C. C., 1983. Ultrastructural evidence for a reabsorptive role by intrarenal veins. Anatomical Record, 207, 253–262

    Google Scholar 

  • KaisslingB. & KrizW., 1979. Structural analysis of the rabbit kidney. Advances in Anatomy, Embryology & Cell Biology, 56, 1–123

    Google Scholar 

  • KaisslingB., DeRouffignacC., BarrettJ. M., & KrizW., 1975. The structural organization of the kidney of the desert rodent Psammomys obesus. Anatomy & Embryology, 148, 121–143

    Google Scholar 

  • KhanM. S., SasidharanT. O. & GhoshiP. K., 1979. Short note. Glomerular filtration rate and blood and urinary urea concentration in Barmer goats of the Rajasthan desert. Journal of Agricultural Science, Cambridge, 93, 247–248

    Google Scholar 

  • KrizW., 1970. Organization of structure within the renal medulla. Urea and the kidney ICS 195. Excerpta Medica Foundation, 1970, 342–357

    Google Scholar 

  • KrizW. & KoepsellH., 1974. The structural organization of the mouse kidney. Z. Anat. Entwickl. Gesch. 144, 137–163

    Google Scholar 

  • KrizW., BarrettJ. M. & PeterS., 1976. The renal vasculature. Anatomical functional aspects. In: K.Thurau (ed), International review of the physiology of the kidney and urinary tract. Vol. II, (University Park Press, Baltimore), 1–21

    Google Scholar 

  • Kriz, W., Kaissling, B. & Pszolla, M., 1978. Morphological characterization of the cells in the Henle's loop and distal tubule. In: H. G. Vogel & K. J. Ullrich (eds), New aspects of renal function. Workshop conference, Hoechst. Vol. VI, 67–78

  • KrizW., SchnermannJ. M. & KoepsellH. 1972. The position of short and long loops of Henle in the rat kidney. Z. Anat. Entwickl. Gesch., 138, 301–319

    Google Scholar 

  • MacfarlaneW. V., 1964. Terrestrial animals in dry heat: ungulates. In: D. B.Dill (ed), Handbook of physiology (American Physiology Society, Washington), 509–539

    Google Scholar 

  • MatsuhashiH., NishidaT. & MochizukiK., 1977. Comparative studies on granulation of juxtaglomerular cells of some mammalian kidneys and limitations of specificity of Bowie staining. Japanese Journal of Veterinary Sciences, 39, 379–388

    Google Scholar 

  • MichaelA. F., KeaneW. F., RaijL., VernierR. L. & MauerS. M., 1980. The glomerular mesangium. Kidney International, 17, 141–154

    Google Scholar 

  • MitchellG. M., StatfordB. F. & RyanG. B., 1982. Morphogenesis of the renal juxtaglomerular apparatus and peripolar cells in sheep. Cell Tissue Research, 222, 101–111

    Google Scholar 

  • MorelF. & DeRouffignacC. 1970. Micropuncture study of urea medullary recycling in desert rodents. Urea and the kidney ICS 195. Excerpta Medica Foundation, 1970 401–413

    Google Scholar 

  • MoussaM. H. G., 1982. Histomorphological study of the JG complex of the one humped camel (Camelus dromedarius). Zebl. Vet. Med. C. Anat. Histol. Embryol, 11, 50–55

    Google Scholar 

  • OhtsukaK., DaigoM., AmasakiJ., YamanoS. & KamiyaS., 1982. Microvasculature of the glomerulus of the pig and cow. Bulletin-Nippon Veterinary & Zootechnical College, 31, 1–8

    Google Scholar 

  • OsswaldH., 1984. The role of adenosine in the regulation of glomerular filtration rate and renin secretion. Trends in Pharmacological Science, 5(3), 94–97

    Google Scholar 

  • PeartW. S., 1977. The kidney as an endocrine organ. Lancet, II(8037), 543–547

    Google Scholar 

  • PeterK., 1909. Untersuchungen uber Bau and Entwicklung der Niere. (Gustav Fischer, Jena), 1–358

    Google Scholar 

  • PfeifferW. E., 1970. Ecological and anatomical factors affecting the gradient of urea and non-urea solutes in mammalian kidneys. Urea and the kidney ICS 195. Excerpta Medica Foundation, 1970, 358–365

    Google Scholar 

  • PlakkeR. K. & PfeifferW. E., 1964. Blood vessels of the mammalian renal medulla. Science, 146, 1683–1685

    Google Scholar 

  • DeRouffignacC., 1972. Physiological role of the loop of Henle in urinary concentration. Kidney International, 2, 297–303

    Google Scholar 

  • DeRouffignacC. & MorelF., 1969. Micropuncture study of water, electrolytes and urea movement along the loops in Psammomys. Journal of Clinical Investigation, 48, 474–486

    Google Scholar 

  • RyanG. B., CoghlanJ. P. & ScogginsB., 1979. The granulated peripolar epithelial cell: a potential secretory components of the renal juxtaglomerular complex. Nature, 277, 655–656

    Google Scholar 

  • RytandD. A. 1938. The number and size of glomeruli as related to kidney and body weight with methods for their enumeration and measurements. American Journal of Anatomy, 62, 507–520

    Google Scholar 

  • SatoH., 1982. Postnatal transitions in urine properties and acid-base section in newborn calves. Japanese Journal of Veterinary Science, 44, 993–996

    Google Scholar 

  • SchaferJ. A., 1984. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney International, 25, 708–716

    Google Scholar 

  • Schmidt-NielsenB., 1958. Urea excretion in mammals. Physiological Reviews, 38, 139–168

    Google Scholar 

  • Schmidt-NielsenB. & O'DellR., 1961. Structure and concentrating mechanisms of the mammalian kidney. American Journal of Physiology, 200, 1119–1124

    Google Scholar 

  • Schmidt-NielsenB. & O'DellR. & OsakiH., 1961. Inter-dependence of urea and electrolytes in production of a concentrated urine. American Journal of Physiology, 200, 1125–1132

    Google Scholar 

  • Schmidt-NielsenK. & Schmidt-NielsenB., 1952. Water metabolism in desert mammals Physiological Reviews, 32, 135–166

    Google Scholar 

  • SchwatzM. M. & VenkatachalamM. A., 1974. Structural differences in thin limbs of Henle: physiological implications. Kidney International, 6, 193–208

    Google Scholar 

  • SmithH. W., 1951. The kidney, structure and function in health and disease. (Oxford University Press, New York), chapter XVII

    Google Scholar 

  • SokabeH. & OgawaM., 1974. Comparative studies of the juxtaglomerular apparatus. International Review of Cytology, 37, 271–327

    Google Scholar 

  • SoltoffS. P. & MandelL. J., 1984a. Active ion transport in the renal proximal tubule. I. Transport and metabolic studies. Journal of General Physiology, 84, 601–621

    Google Scholar 

  • SoltoffS. P. & MandelL. J., 1984b. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump. Journal of General Physiology, 84, 623–642

    Google Scholar 

  • SoltoffS. P. & MandelL. J., 1984c. Active ion transport in the renal proximal tubule. III. The ATP dependence of the Na pump. Journal of General Physiology, 84, 643–662

    Google Scholar 

  • SperberI. 1944. Studies on mammalian kidney. Zoologiska Bridrag fran Uppsala, XXII, 249–431

    Google Scholar 

  • StephensonJ. C., MejiaR. & TewarsonR. P., 1976. Model of solute and water movement in the kidney. Proceedings—National Academy of Sciences, USA, 73, 252–256

    Google Scholar 

  • TaugnerR., BuhrleC. P., HackenthalE., MannekE. & NobilingR., 1984. Renin-angiotensin system. Morphology of the juxtaglomerular apparatus and secretory mechanisms. Contributions to Nephrology, 43, 76–101

    Google Scholar 

  • ValtinH., 1977. Structural and functional heterogeneity of mammalian nephrons. American Journal of Physiology 233, F491-F501

    Google Scholar 

  • ViskeA., HoldaasH., SeferstedO. M. & KiilF., 1984. Relationship between PGE2 and renin release in dog kidneys. Effects of afferent arteriolar dilation and adrenergic stimulation. Acta Physiologica Scandinavica, 121, 261–268

    Google Scholar 

  • YadavaR. P. & CalhounM. L., 1958. Comparative histology of the kidney of domestic animals. American Journal of Veterinary Research, 19, 958–968

    Google Scholar 

  • YoungD. B. & Yi-jenPan, 1984. Interaction between the natriuretic effects of renal perfusion pressure and the antinatriuretic effects of angiotensin and aldosterone in control of sodium excretion. Journal of Physiology, Paris, 79, 511–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbassa, G.K. Mammalian renal modifications in dry environments. Veterinary Research Communications 12, 1–18 (1988). https://doi.org/10.1007/BF00396399

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396399

Keywords

Navigation