Skip to main content
Log in

Leaf anatomy, water relations and crassulacean acid metabolism in the chlorenchyma and colourless internal water-storage tissue of Carpobrotus edulis and Senecio ?mandraliscae

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Both Carpobrotus edulis and Senecio ?mandraliscae possess leaves with a peripheral chlorenchyma and colourless internal water-storage tissue. Water stress in C. edulis growing under semi-natural conditions resulted in the induction of weak Crassulacean acid metabolism (CAM) whereas well-watered plants of S. ?mandraliscae exhibited a similar degree of CAM. Titratable acidity in the separated water-storage tissue was substantially lower than in the chlorenchyma in both species but, nevertheless, increased during the night and decreased during the day either when sampled from the intact plant or from incubated tissue slices. Indeed, the increase in nocturnal titratable acidity produced by the water-storage tissue in situ accounted for approx. 30% of total acidification on a per-leaf basis. It appears that during the night the water-storage tissue in these species is able to fix CO2 which is subsequently released during the day to enter the photosynthetic carbon-reduction cycle of the chlorenchyma. Diurnal rhythms of water potential (Ψ) and osmotic potential (Ψs) were measured in separated chlorenchyma and water-storage tissue by thermocouple psychrometry. Both parameters increased during the latter part of the daytime and initial nocturnal period and decreased during the rest of the night and into the post-dawn period. The chlorenchyma of water-stressed plants of C. edulis appeared to possess a marked negative turgor pressure (as determined from Ψ-Ψs) but this was caused by a severe underestimation in the measurement of the chlorenchyma Ψ. It is suggested that this artefact arose from release of colloidal polysaccharide mucilage, or possibly tannins, from broken tannin cells producing a lowering of water activity when measured using thermocouple psychrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

CH:

chlorenchyma

PEG:

polyethylene glycol

Ψ:

water potential

Ψs:

osmotic potential

WS:

water-storage tissue

References

  • ap Rees, T., Fuller, W.A., Green, J.H. (1981) Extremely high activities of phosphoenolpyruvate carboxylase in thermogenic tissues of Araceae. Planta 152, 79–86

    Google Scholar 

  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Barrs, H.D. (1968) Determination of water deficits in plant tissues. In: Water deficits and plant growth, vol. 1, pp. 235–268, Kozlowski, T.T., ed. Academic Press, New York, London

    Google Scholar 

  • Beneš, K. (1968) On the stainability of plant cell walls with alcian blue. Biol. Plant. 10, 334–346

    Google Scholar 

  • Chow, P.N., Burnside, O.P., Lavy, T.L. (1966) Physiological studies with prickly pear. Weeds 14, 58–62

    Google Scholar 

  • Cutter, E.G. (1978) Plant anatomy, pt. I: Cells and tissues. 2nd ed. Edward Arnold, London

    Google Scholar 

  • Earnshaw, M.J., Carver, K.A., Lee, J.A. (1985) Changes in leaf water potential and CAM in Sempervivum montanum and Sedum album in response to water availability in the field. Oecologia (Berlin) 67, 486–492

    Google Scholar 

  • Feder, N., O'Brien, T.P. (1968) Plant microtechnique: some principles and new methods. Am. J. Bot. 55, 123–142

    Google Scholar 

  • Gortner, R.A., Gortner, W.A. (1949) Outlines of Biochemistry. John Wiley, New York

    Google Scholar 

  • Gurr, E. (1960) Encyclopaedia of microscopic stains. Leonard Hill Ltd., London

    Google Scholar 

  • Haberlandt, G. (1928) Physiological Plant Anatomy (Englis transl.) MacMillan, London

    Google Scholar 

  • Herr, J.M. (1971) A new clearing technique for the study of ovule development in angiosperms. Am. J. Bot. 58, 785–790

    Google Scholar 

  • Jensen, W.A. (1962) Botanical histochemistry. Freeman, San Francisco London

    Google Scholar 

  • Johansen, D.A. (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kluge, M., Knapp, D., Kramer, M., Schwerdtner, I., Ritter, H. (1979) Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens Mill. Planta 145, 357–363

    Google Scholar 

  • Kluge, M., Ting, I.P. (1978) Crassulacean acid metabolism (Ecological studies, vol. 30), pp. 31–34. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kyriakopoulos, E., Richter, H. (1977) A comparison of methods for the determination of water status in Quercus ilex L. Z. Pflanzenphysiol. 82, 14–27

    Google Scholar 

  • Lange, O.L., Lösch, R. (1979) Plant water relations. In: Progress in Botany, vol. 41, pp. 10–43, Ellenberg, H., Esser, E., Kubitzki, K., Schnepf, E., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lüttge, U., Ball, E., Greenway, H. (1977) Effects of water and turgor potential on malate efflux from leaf slices of Kalanchoë daigremontiana. Plant Physiol. 60, 521–523

    Google Scholar 

  • Lüttge, U., Kluge, M., Ball, E. (1975) Effects of osmotic gradients on vacuolar malic acid storage — a basic principle in oscillatory behaviour of crassulacean acid metabolism. Plant Physiol. 56, 613–616

    Google Scholar 

  • Lüttge, U., Nobel, P.S. (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol. 75, 804–807

    Google Scholar 

  • Lüttge, U., Smith, J.A.C., Marigo, G. (1982) Membrane transport, osmoregulation and the control of CAM. In: Crassulacean acid metabolism (Proc. 5th Annu. Symp. Bot., University of California, Riverside), pp. 69–91, Ting, I.P., Gibbs, M., eds. American Society of Plant Physiologists, Rockville, Maryland

    Google Scholar 

  • Metcalfe, C.R., Chalk, L. (1950) Anatomy of the dicotyledons. (2 vol.). Clarendon Press, Oxford

    Google Scholar 

  • Oberstein, O. (1914) Über das Auftreten von Gerbstoffidioblasten bei den Mesembryanthemen. Beih. Bot. Zentralbl. 31, 388–393

    Google Scholar 

  • O'Brien, T.P., Feder, N., McCully, M.E. (1964) Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma 59, 368–373

    Google Scholar 

  • Reeve, R.M. (1959) Histological and histochemical changes in developing and ripening peaches I. The catechol tannins. Am. J. Bot. 46, 210–217

    Google Scholar 

  • Sipes, D.L., Ting, I.P. (1985) Crassulacean acid metabolism and Crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol. 77, 59–63

    Google Scholar 

  • Slatyer, R.O. (1960) Aspects of the tissue water relationships of an important arid zone species (Acacia aneura F. Muell) in comparison with two mesophytes. Bull. Res. Counc. Isr. Sect. D 8, 159–168

    Google Scholar 

  • Smith, J.A.C., Lüttge, U. (1985) Day-night changes in leaf water relations associated with the rhythm of Crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163, 272–282

    Google Scholar 

  • Sterling, C. (1970) Crystal structure of ruthenium red and stereochemistry of its pectic stain. Am. J. Bot. 57, 172–175

    Google Scholar 

  • Ting, I.P., Bates, L., Sternberg, L.O., Deniro, M.J. (1985) Physiological and isotopic aspects of photosynthesis in Peperomia. Plant Physiol. 78, 246–249

    Google Scholar 

  • Treichel, S., Bauer, P. (1974) Unterschiedliche NaCl-Abhängigkeit des tagesperiodischen CO2-Gaswechsels bei einigen halisch wachsenden Küstenpflanzen. Oecologia (Berlin) 17, 87–95

    Google Scholar 

  • Troughton, J.H. (1979) δ13C as an indicator of carboxylation reactions. In: Encyclopedia of plant physiology, N.S., vol. 6: Photosynthesis II: Photosynthetic carbon metabolism, pp. 140–147, Gibbs, M., Latzko, E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tyree, M.T. (1976) Negative turgor pressure in plant cells: fact or fallacy? Can. J. Bot. 54, 2738–2746

    Google Scholar 

  • von Willert, D.J., Brinckmann, E., Schulze, E.-D. (1979) Ecophysiological investigations of plants in the coastal desert of Southern Africa. Ion content and Crassulacean acid metabolism. In: Ecological processes in coastal environments, pp. 321–331, Jefferies, R.L., Davy, A.J., eds. Blackwell, Oxford

    Google Scholar 

  • von Willert, D.J., Brinckmann, E., Scheitler, B., Eller, B.M. (1985) Availability of water controls Crassulacean acid metabolism in succulents of the Richtersveld (Namib desert, South Africa). Planta 164, 44–55

    Google Scholar 

  • Wiebe, H.H., Al-Saadi, H.A. (1976) Matric bound water of water tissue from succulents. Physiol. Plant. 36, 47–51

    Google Scholar 

  • Winter, K. (1973) NaCl-induzierter Crassulaceen-Säurestoffwechsel bei einer weiteren Aizoaceae Carpobrotus edulis. Planta 115, 187–188

    Google Scholar 

  • Winter, K. (1974a) NaCl-induzierter Crassulaceen-Säurestoffwechsel bei der Salzpflanze Mesembryanthemum crystallinum. Abhängigkeit des CO2-Gaswechsels von der Tag/Nacht-Temperatur und von der Wasserversorgung der Pflanzen. Oecologia (Berlin) 15, 383–392

    Google Scholar 

  • Winter, K. (1974b) Evidence for the significance of crassulacean acid metabolism as an adaptive mechanism to water stress. Plant Sci. Lett. 3, 297–281

    Google Scholar 

  • Winter, K. (1985) Crassulacean acid metabolism. In: Photosynthetic mechanisms and the environment, pp. 329–387, Barber, J., Baker, N.R., eds. Elsevier, Amsterdam

    Google Scholar 

  • Winter, K., Lüttge, U. (1976) Malate accumulation in leaf slices of Mesembryanthemum crystallinum in relation to osmotic gradients between the cells and the medium. Aust. J. Plant Physiol. 3, 653–663

    Google Scholar 

  • Winter, K., Lüttge, U. (1979) C3-Photosynthese und Crassulaceen-Säurestoffwechsel bei Mesembryanthemum crystallinum L. Ber. Deutsch. Bot. Ges. 92, 117–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earnshaw, M.J., Carver, K.A. & Charlton, W.A. Leaf anatomy, water relations and crassulacean acid metabolism in the chlorenchyma and colourless internal water-storage tissue of Carpobrotus edulis and Senecio ?mandraliscae . Planta 170, 421–432 (1987). https://doi.org/10.1007/BF00395036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395036

Key words

Navigation