Skip to main content
Log in

Cellulose-microfibril-orienting mechanisms in plant cells walls

  • Published:
Planta Aims and scope Submit manuscript

Abstract

A brief review is given of the changing views over the years, as knowledge of wall structure has developed, concerning the mechanism whereby cellulose chains may be oriented. This leads to an examination of current concepts, particularly those concerning microtubules. It is shown that none of the mechanisms suggested whereby microtubules might cause orientation of cellulose microfibrils is consistent with the known range of molecular architectures found in plant cell walls. It is further concluded that any mechanism which necessitates an indissoluble link between the plasmalemma and the cellulose-synthesising complex at the tip of a microfibril is unacceptable. A new proposal is presented in which it is speculated that both microtubules and microfibrils are oriented by a mechanism separate from both. It is shown that if two vectors are contemplated, one parallel to cell length and one at right angles, and a sensor exists on the plasmalemma surface which responds to changes in the vectors, then all known wall structures may be explained. The possible nature of the vectors and the sensor are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astbury, W.T., Bell, F.O. (1941) Nature of the intramolecular fold in alpha-keratin and alpha-myosin. Nature 147, 696–699

    Google Scholar 

  • Astbury, W.T., Preston, R.D. (1940) The structure of the cell wall in some species of the filamentous green alga Cladophora. Proc. R. Soc. London Ser. B 129, 54–76

    Google Scholar 

  • Berlin, R.D., Oliver, J.M., Ukena, T.E., Yin, H.H. (1974) Control of cell surface topography. Nature 247, 45–46

    Google Scholar 

  • Castle, E.S. (1937) Membrane tension and orientation of structure in the plant cell wall. J. Cell. Comp. Physiol. 10, 113–121

    Google Scholar 

  • Chafe, S.C. (1978) On the mechanism of cell wall microfibrillar orientation. Wood Sci. Technol. 12, 203–219

    Google Scholar 

  • Estridge, M. (1977) Polypeptides similar to the α and β subunits of tubulin are exposed on the neuronal surface. Nature 268, 60–63

    Google Scholar 

  • Frei, E., Preston, R.D. (1961) Cell wall organisation and cell growth in the filamentous green algae Cladophora and Chaetomorpha I. The basic structure. Proc. R. Soc. London Ser. B 154, 70–94

    Google Scholar 

  • Frey-Wyssling, A., Mühlethaler, K., Wyckoff, R.W.G. (1948) Mikrofibrillenbau der pflanzlichen Zellwand. Experientia 4, 475–477

    Google Scholar 

  • Gahmber, C.G. (1977) Membrane glycoproteins and glycolipids: Structure, localisation and function of the carbohydrate. In: Membrane structure and function, pp. 127–154, Finean, J.B., Mitchell, R.H., eds. Elsevier, New York

    Google Scholar 

  • Gardner, K.H., Blackwell, J. (1974) The structure of native cellulose. Biopolymers 13, 1975–1984

    Google Scholar 

  • Gompertz, B. (1977) The plasma membrane: models for structure and function. Academic Press, London New York

    Google Scholar 

  • Grimm, I., Sachs, H., Robinson, D.G. (1976) Structure synthesis and orientation of microfibrils II. The effect of colchicine on the wall of Oocystis solitaria. Cytobiologie 14, 61–74

    Google Scholar 

  • Gunning, B.E.S., Hardham, A.R. (1982) Microtubules. Annu. Rev. Plant Physiol. 33, 651–698

    Google Scholar 

  • Hepler, P.K. (1981) Morphogenesis of tracheary elements and guard cells. In: Cytomorphogenesis in plants (Int. Biol. Monogr. vol. 8), pp. 327–347, Kiermayer, O., ed. Academic Press, New York

    Google Scholar 

  • Hol, W.G.J., Halie, M.L., Sanders, M.C. (1981) Dipoles of the α-helix and β-sheet: their role in protein folding. Nature 294, 532–536

    Google Scholar 

  • Ledbetter, M.C., Porter, K. (1963) A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250

    Google Scholar 

  • Lloyd, C.W. (1984) Toward a dynamic helical model for the influence of microtubules on cell wall patterns in plants. Int. Rev. Cytol. 86, 1–51

    Google Scholar 

  • Martens, P. (1940) Mouvement protoplasmique et relief de la parois cellulaire. La Cellule 48, 249–258

    Google Scholar 

  • Mita, T., Shibaoka, H. (1983) Changes in microtubules in onion leaf sheath cells during bulb development. Plant Cell Physiol. 24, 109–117

    Google Scholar 

  • Moor, H., Mühlethaler, K. (1963) Fine structure in frozenetched yeast cells. J. Cell Biol. 17, 609–628

    Google Scholar 

  • Nicolai, M.F.E., Frey-Wyssling, A. Über den Feinbau der Zellwand von Chaetomorpha. Protoplasma 30, 401–413

  • Nicolai, M.F.E., Preston, R.D. (1953) Cell wall studies in the Chlorophyceae. II. A preliminary study of the effect of constant illumination on wall structure in Cladophora rupestris. Proc. Roy. Soc. London Ser. B 141, 407–419

    Google Scholar 

  • Nicolai, M.F.E., Preston, R.D. (1959) Cell wall studies in the Chlorophyceae. III. Differences in structure and development in the Cladophorales. Proc. Roy. Soc. London Ser. B 151, 244–254

    Google Scholar 

  • Nieduszinski, I.A., Atkins, E.D.T. (1970) Preliminary study of algal celluloses. I. X-ray intensity data. Biochim. Biophys. Acta 222, 109–118

    Google Scholar 

  • Pizzi, A., Eaton, N. (1985) The structure of cellulose by conformational analysis. 2. The cellulose polymer chain. J. Macromol. Sci. Chem. 22(1), 105–114

    Google Scholar 

  • Preston, R.D. (1934) The organisation of the walls of conifer tracheids. Philos. Trans. R. Soc. London Ser. B 224, 131–174

    Google Scholar 

  • Preston, R.D. (1941) “Crossed fibrillar” structure of plant cell walls. Nature 147, 710

    Google Scholar 

  • Preston, R.D. (1964) Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth. In: The formation of wood in forest trees, pp. 169–201, Zimmermann, M.H., ed. Academic Press, New York London

    Google Scholar 

  • Preston, R.D. (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Preston, R.D., Astbury, W.T. (1937) The structure of the wall of the green alga Valonia ventricosa. Proc. R. Soc. London Ser. B 122, 76–97

    Google Scholar 

  • Preston, R.D., Goodman, R.W. (1968) Structural aspects of cellulose microfibril biosynthesis. J. R. Microsc. Soc. 88, 513–522

    Google Scholar 

  • Preston, R.D., Nicolai, M.F.E., Reed, R., Millard, A. (1948) An electron microscope study of cellulose in the wall of Valonia ventricosa. Nature 162, 957–959

    Google Scholar 

  • Preston, R.D., Singh, K. (1950) The fine structure of bamboo fibres I. Optical properties and X-ray data. J. Exp. Bot. 1, 214–232

    Google Scholar 

  • Preston, R.D., Wardrop, A.B. (1949) The fine structure of the wall of the conifer tracheid IV. Dimensional relationships in the outer layer of the secondary wall. Biochim. Biophys. Acta 3, 585–592

    Google Scholar 

  • Quader, H., Deichgräber, G., Schnepf, E. (1987) The cytoskeleton of Cobaea seed hairs: patterning during cell wall development. Planta 168, 1–10

    Google Scholar 

  • Quader, H., Herth, W., Schnepf, E. (1987) Cytoskeletal elements in cotton seed hair developed in vitro: their possible regulatory role in cell wall organisation. Protoplasma 137, 56–61

    Google Scholar 

  • Quatrano, R.S. (1978) Development of cell polarity. Annu. Rev. Plant Physiol. 29, 487–510

    Google Scholar 

  • Robinson, D.G. (1985) Plant membranes. John Wiley and Sons, London

    Google Scholar 

  • Robinson, D.G., Herzog, W. (1977) The synthesis and orientation of microfibrils III. A survey of the action of microtubule inhibitors on microtubule and microfibril orientation in Oocystis solitaria. Cytobiologie 15, 463–474

    Google Scholar 

  • Sarko, A., Muggli, R. (1974) Packing analysis of carbohydrates and polysaccharides IV: Valonia cellulose and cellulose II. Macromolecules 7, 486–492

    Google Scholar 

  • Srivistava, L.M., Sawhney, V.K., Bonettemaker, M. (1977) Cell growth, wall deposition and correlated fine structure of colchicine treated lettuce hypocotyl cells. Can. J. Bot. 55, 902–917

    Google Scholar 

  • Stern, F., Stout, H.P. (1954) Morphological relations in cellulose fibre cells. J. Text. Inst. 45, 1896–1911

    Google Scholar 

  • Sugiama, J., Harada, H., Fujiyoshi, Y., Ueda, N. (1985) Observations of cellulose microfibrils in Valonia macrophysa by high resolution electron microscopy. Mokusai Gakkaishi 31(2), 61–64

    Google Scholar 

  • Van Iterson, G., Jr (1937) A few observations on the hairs of Tradescantia virginica. Protoplasma 27, 190–211

    Google Scholar 

  • Wardrop, A.B. (1964) The structure and formation of the cell wall in xylem. In: The formation of wood in forest trees, pp. 87–134, Zimmermann, M.H., ed. Academic Press, New York London

    Google Scholar 

  • Weisenseel, M.H., Kicherer, R.M. (1981) Ionic currents as control mechanisms in cytomorphogenesis. In: Cytomorphogenesis in plants (Cell Biol. Monogr. vol. 8), pp. 379–399, Kiermayer, O., ed. Academic Press, New York

    Google Scholar 

  • Willison, J.H.M. (1982) Microfibril-tip growth and the developments of pattern in cell walls. In: Cellulose and other natural polymer systems, pp. 105–125, Brown, R.M., Jr, ed. Plenum Press, London New York San Francisco

    Google Scholar 

  • Willison, J.H.M., Brown, R.M., Jr (1978) Cell wall structure and deposition in Glaucocystis. J. Cell Biol. 77, 103–119

    Google Scholar 

  • Wunderlich, F., Müller, R., Speth, V. (1973) Direct evidence for a colchicine-induced impairment in the mobility of membrane components. Science 182, 1136–1138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, R.D. Cellulose-microfibril-orienting mechanisms in plant cells walls. Planta 174, 67–74 (1988). https://doi.org/10.1007/BF00394875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394875

Key words

Navigation