Skip to main content
Log in

Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Plant phenols tend to accumulate under conditions where plants have excess carbon above the level which can be used for growth, and where phenylalanine, the substrate of phenylpropanoid synthesis, accumulates due to suppressed protein synthesis. These internal balances imply an accumulation of phenols as a consequence of nitrogen deficiency suppressing plant primary metabolism. In three sublittoral populations of the brown alga Fucus vesiculosus (L.) collected from the northern Baltic Sea between May and September 1982, the accumulation of phenolic compounds correlated inversely with nitrogen content of thallus; higher phenolic contents were on average found under nitrogen deficiency. Phenolic content did not correlate with carbon content of thallus as such, while a significant negative correlation was found with the nitrogen: carbon ratio. Phenolic compounds, although having possibly defensive functions in plants, may thus partially vary as a function of resource availability rather than as a result of an active allocation into plant defences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bernays, E. A., Woodhead, E. (1982). Incorporation of dietary phenols into the cuticle in the tree locust Anacridium melanorhodon. J. Insect Physiol. 28: 601–606

    Google Scholar 

  • Bryant, J. P., Chapin III, F. S., Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368

    Google Scholar 

  • Bryant, J. P., Chapin III, F. S., Reichhardt, P. B., Clausen, T. P. (1987). Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon:nutrient balance. Oecologia (Berl.) 72: 510–514

    Google Scholar 

  • Burns, R. E. (1963). Methods of tannin analysis for forage crop evaluation. Georgia, Agric. Exp. Stn. Tech. Bull. 32: 4–14

    Google Scholar 

  • Chapman, A. R. O., Craigie, J. S. (1977). Seasonal growth in Laminaria longicurris: relations with dissolved inorganic nutrients and internal reserves of nitrogen Mar. Biol. 40: 197–205

    Google Scholar 

  • Coley, P. D., Bryant, J. P., Chapin III, F. S. (1985). Resource availability and plant anti-herbivore defense. Science, N.Y. 230: 895–899

    Google Scholar 

  • Del Moral, R. (1972). On the variability of chlorogenic acid concentration. Oecologia (Berl.) 9: 289–300

    Google Scholar 

  • Feeny, P. P. (1968). Effects of oak leaf tannins on larval growth of the winter moth Opheroptera brumata. J. Insect Physiol. 14: 805–817

    Google Scholar 

  • Feeny, P. P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581

    Google Scholar 

  • Feeny, P. P. (1975). Plant apparency and chemical defense. In: Wallace, J. W., Mansell, R. L. (eds.) Biochemical Interactions between Plants and Insects. Plenum Press, New York, p. 1–40

    Google Scholar 

  • Geiselman, J. A., McConnell, O. J. (1981). Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defences against the marine herbivorous snail, Littorina littorea. J. chem. Ecol. 7: 1115–1133

    Google Scholar 

  • Gershenzon, J. (1984). Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann, B. N., Steelink C., Loewus, F. A. (eds.) Phytochemical adaptation to stress. Plenum Press, New York, p. 273–320

    Google Scholar 

  • Janzen, D. H. (1974). Tropical black water rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropica 6: 69–103

    Google Scholar 

  • Johnson, C. R., Mann, K. H. (1986). The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J. exp. mar. Biol. Ecol. 97: 231–267

    Google Scholar 

  • Khailov, K. M., Kholodov, V. J., Firsov, Y. K., Prazukin, A. V. (1978). Thalli of Fucus vesiculosus in ontogenesis: changes in the morpho-physiological parameters. Botanica mar. 21: 289–311

    Google Scholar 

  • King, R. J., Schramm, W. (1976). Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Mar. Biol. 37: 215–222

    Google Scholar 

  • Kleiner, J. S., Orten, J. M. (1966). Biochemistry, 7th edn. The C.V. Masby Co., Saint Louis

    Google Scholar 

  • Kornfeldt, R. A. (1982). Relation between nitrogen and phosprorus content of macroalgae and the waters of Northern öresund. Botanica mar. 25: 197–201

    Google Scholar 

  • Levin, D. A. (1971). Plant phenolics: an ecological perspective. Am. Nat. 105: 157–181

    Google Scholar 

  • Lincoln, D. E., Newton, T. S., Ehrlich, P. R., Williams, K. S. (1982). Coevolution of the checkerspot butterfly Euphydryas chalcedona and its larval food plant Diplacus aurantiacus: larval response to protein and leaf resin. Oecologia (Berl.) 52: 216–223

    Google Scholar 

  • Margna, U. (1977). Control at the level of substrate supply — an alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 16: 419–426

    Google Scholar 

  • Margna, U., Vainjärv, T. (1983). Kinetin-mediated stimulation of accumulation of buckwheat flavonoids in the dark. Z. Naturf. 38c: 711–718

    Google Scholar 

  • Margna, U., Vainjärv, T., Margna, E. (1972). The influence of exogenous sugar feeding on the accumulation of anthocyanins and rutin in buckwheat seedling hypocotyls. Eesti NSV Tead. Akad. Toim., Biol. 21: 141–150

    Google Scholar 

  • McKey, D., Waterman, P. G., Mbi, C. N., Gartlan, J. S., Struhsaker, T. T. (1978). Phenolic content of vegetation in two African rain forests: ecological implications. Science, N.Y. 202: 61–63

    Google Scholar 

  • Mooney, H. A., Gulmon, S. L., Johnson, N. D. (1983). Physiological constraints on plant chemical defenses. In: Hedin, P. A. (ed.) Plant Resistance to Insects. Amer. Chem. Soc. Symp. Series 208: 21–36

  • Pedersen, A. (1984). Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116/117: 498–504

    Google Scholar 

  • Phillips, R., Henshaw, G. G. (1977). The regulation of synthesis of phenolics in stationary phase cell culture of Acer pseudoplatanus L. J. exp. Bot. 28: 785–794

    Google Scholar 

  • Ragan, M. A., Glombitza, K.-W. (1986). Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 4: 129–241

    Google Scholar 

  • Ragan, M. A., Jensen, A. (1978). Quantitative studies on brown algal phenols II: Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus L. J. exp. mar. Biol., Ecol. 34: 245–258

    Google Scholar 

  • Rhoades, D. F. (1979). Evolution of plant chemical defence against herbivores. In: Rosenthal, G. A., Janzen, D. H. (eds.) Herbivores: their Interactions with Secondary Plant Metabolites. Academic Press, New York, p. 3–54

    Google Scholar 

  • Rönnberg, O. (1981). Traffic effect of rocky-shore algae in the Archipelago Sea, SW Finland. Acta Acad. Abo. Ser. B. 41: 1–86

    Google Scholar 

  • Rönnberg, O., Ruokolahti, C. (1986). Seasonal variation of algal epiphytes and phenolic content of Fucus vesiculosus in a northern Baltic archipelago. Ann. Bot. Fenn. 23: 317–323

    Google Scholar 

  • Salonen, K. (1979). A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183

    Google Scholar 

  • Steinberg, P. D. (1980). The potential role of phenolic compounds as herbivore defenses in brown algae. Amer. Zool. 20: 885

    Google Scholar 

  • Steinberg, P. D. (1984). Algal chemical defenses against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science, N.Y. 223: 405–406

    Google Scholar 

  • Topinka, J. A. (1978). Nitrogen uptake by Fucus spiralis (Phaeophyceae). J. Phycol. 14: 241–247

    Google Scholar 

  • Tuomi, J., Niemelä, P., Chapin III, F. S., Bryant, J. P., Siren, S. (1987). Defensive responses of trees in relation to their carbon/nutrient balance. In: Mattson, W. J., Levieux, J., Bernard-Dagan, C. (eds.) Mechanisms of woody plant defenses against insects: search for patterns. Springer-Verlag, New York, p. 57–72

    Google Scholar 

  • Tuomi, J., Niemelä, P., Haukioja, E., Siren, S., Neuvonen, S. (1984). Nutrient stress: an explanation for anti-herbivore responses to defoliation. Oecologia (Berl.) 61: 208–210

    Google Scholar 

  • Wallentinus, J. (1984). Partitioning of nutrient uptake between annual and perennial seaweeds in a Baltic archipelago area. Hydrobiologia 116/117: 363–370

    Google Scholar 

  • Whitford, L. A., Schumacher, G. J. (1963). Communities of algae in North Carolina streams and their seasonal relations. Hydrobiologia 22: 133–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilvessalo, H., Tuomi, J. Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosus . Mar. Biol. 101, 115–119 (1989). https://doi.org/10.1007/BF00393484

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393484

Keywords

Navigation