Skip to main content
Log in

The effect of low oxygen concentration on the acyl-lipid and fatty-acid composition of the C4 plant Amaranthus paniculatus L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Acyl lipids and their constituent fatty acids were studied in leaves, chloroplasts and bundle-sheath strands of the C4 plant Amaranthus paniculatus L. grown under normal and 4%-oxygen-containing atmospheres. In all fractions the major lipids were found to be monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulphoquinovo-syldiacylglycerol and phosphatidylglycerol. Significant quantities of phosphatidylcholine and phosphatidylethanolamine were restricted to leaves and bundle-sheath strands. All lipids, except phosphatidylglycerol where 3-trans-hexadecenoic acid was also present, contained palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. On a chlorophyll basis and compared with whole leaves, the amounts of phosphatidylcholine and phosphatidylethanolamine in bundle-sheath strands were considerably reduced. Three weeks after the change from a normal to a 4% atmospheric O2 level, the galactolipid content, particularly in the bundlesheath strands, was enhanced. There were no significant differences in the degrees of saturationunsaturation of total acyl lipid for the plants grown in the low oxygen and normal atmospheres, although under 4% O2 the phosphatidylglycerol contained an increased proportion of 3-trans-hexadecenoic acid at the expense of palmitic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DGDG:

digalactosyldiacylglycerol

MGDG:

monogalactosyldiacylglycerol

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

SQDG:

sulphquinovosyldiacylglycerol

References

  • Aebi, H. (1974) Katalase. In: Methoden der enzymatischen Analyse, vol. 1, pp. 713–724, Bergmeyer, H.U., ed. Verlag Chemie. Weinheim

    Google Scholar 

  • Amstrong, W., Gaynard, T.J. (1976) The critical oxygen pressure for respiration in intact plants. Physiol. Plant. 37, 200–206

    Google Scholar 

  • Anderson, J.M. (1981) Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts FEBS Lett. 124, 1–10

    Google Scholar 

  • Bahl, J., Francke, B., Monegar, R. (1976) Lipid composition of envelopes, prolamellar bodies and other plastid membranes in etiolated, green and greening wheat leaves. Planta 129, 193–201

    Google Scholar 

  • Bishop, D.G., Anderson, K.S., Smilie, R.M. (1971) The distribution of galactolipids in mesophyll and bundle sheath chloroplasts of maize and sorghum. Biochim. Biophys. Acta 231, 412–414

    Google Scholar 

  • Bolton, P., Wharfe, J., Harwood, J.L. (1978) The lipid composition of a barley mutant lacking chlorophyll b. Biochem. J. 174, 67–72

    Google Scholar 

  • Chapman, D.J., De-Felice, J., Barber, J. (1983) Influence of winter and summer growth conditions on leaf membrane lipids of Pisum sativum L. Planta 157, 218–223

    Google Scholar 

  • Chapman, D.J., Millner, P.A., Ford, R.C., Barber, J. (1982) Lipid content of chloroplast thylakoids and regulation of photosynthetic electron transport. In: Developments in plant biology, vol. 8: Biochemistry and metabolism of plant lipids, pp. 363–368, Wintermans, J.F.G.M., Kuiper, P.J.C., eds. Elsevier Biomedical Press/North-Holland, Amsterdam New York Oxford

    Google Scholar 

  • Chollet, R., Ogren, W.L. (1975) Regulation of photorespiration in C3 and C4 species. Bot. Rev. 41, 137–177

    Google Scholar 

  • Debuch, H., Mehrens, W., Winterfeld, M. (1968) Quantitative Bestimmung der Phosphatide mit Hilfe einer zweidimensionalen dünnschichtchromatographischen Methode. Hoppe-Seyler's Z. Physiol. Chem. 349, 896–902

    Google Scholar 

  • Döhler, G., Datz, G. (1980) effect of light on lipid and fatty acid composition of cyanobacteria, Anacystis nidulans (Synechococcus). Z. Pflanzenphysiol. 100, 427–435

    Google Scholar 

  • Douce, R. (1974) Site of biosynthesis of galactolipids in spinach chloroplasts. Science 183, 852–853

    Google Scholar 

  • Douce, R., Holz, R.B., Benson, A.A. (1973) Isolation and properties of the envelope of spinach chloroplasts. J. Biol. Chem. 248, 7215–7222

    Google Scholar 

  • Douce, R., Joyard, J. (1980) Plant galactolipids. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 321–362, Stumpf, P.K., ed. Academic Press, New York London Toronto Sydney

    Google Scholar 

  • Edwards, G.E., Black, C.C. (1971) Photosynthesis in mesophyll cells and bundle sheath cells isolated from Digitaria sanguinalis (L.) Scop. leaves. In: Photosynthesis and photorespiration, pp. 153–168, Hatch, M.D., Osmond, C.B., Slayter, R.O., eds. Wiley-Interscience, New York London Sydney Toronto

    Google Scholar 

  • Fishwick, M.J., Wright, A.J. (1977) Comparison of methods for the extraction of plant lipids. Phytochemistry 16, 1507–1510

    Google Scholar 

  • Givan, C.V., Givan, A.L., Leech, R.M. (1970) Photoreduction of α-ketoglutarate to glutamate by Vicia faba chloroplasts. Plant Physiol. 45, 624–530

    Google Scholar 

  • Hackett, D.P. (1964) Enzymes of terminal respiration. In: Modern methods of plant analysis, vol. 7, pp. 647–694, Linskens, H.F., Sanwal, B.D., Tracey, M.V., eds. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Hall, D.O. (1972) Nomenclature for isolated chloroplasts Nature (London) New Biol. 235, 125–126

    Google Scholar 

  • Harris, P., James, A.T. (1969a) The effect of low temperature on fatty acid biosynthesis in plants. Biochem. J. 112, 325–330

    Google Scholar 

  • Harris, P., James, A.T. (1969b) Effect of low temperature on fatty acid biosynthesis in seeds. Biochim. Biophys. Acta 187, 13–18

    Google Scholar 

  • Harwood, J.L. (1980a) Plant acyl lipids: structure, distribution, and analysis. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 1–55, Stumpf, P.K., ed. Academic Press, New York London Toronto Sydney

    Google Scholar 

  • Harwood, J.L. (1980b) Sulfolipids. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 301–320, Stumpf, P.K., ed. Academic Press, New York London Toronto Sydney

    Google Scholar 

  • Hichcook, C., Nichols, B.W. (1971) Plant lipid biochemistry, pp. 66–71. Academic Press, London New York

    Google Scholar 

  • Höhler, T., Grothus, R., Schaub, H., Egle, K. (1976) Über den Einfluß des Sauerstoffs auf Stoffproduktion und tagesperiodische Schwankungen der CO2-Aufnahme. Trockengewichtszunahme, Nettophotosynthese und Transpiration von Amaranthus paniculatus und Zea mays bei Anzucht unter 4% Sauerstoff im Vergleich zu normaler Luft. Photosynthetica 10, 59–70

    Google Scholar 

  • Höhler, T., Schaub, H. (1979) Effect of low oxygen partial pressure during growth on the metabolism of aspartic acid and 3-phosphoglyceric acid in leaves of the C4 plant Amaranthus paniculatus. Biochem. Physiol. Pflanz. 174, 58–67

    Google Scholar 

  • Kahn, M., Chapman, D.J., Lem, N.W., Chandorkar, K.R., Williams, J.B. (1979) Glycerolipid synthesis in the leaves of Vicia faba and Hordeum vulgare treated with substituted pyridaziones (San 9785, San 9774 and San 6706). In: Developments in plant biology, vol. 3: Advances in the biochemistry and physiology of plant lipids, pp. 415–420, Appelquvist, L.A., Lilienberg, C., eds. Elsevier Biomedical Press/North-Holland. Amsterdam New York Oxford

    Google Scholar 

  • Kates, M. (1972) Techniques of lipidology. In: Laboratory techniques in biochemistry and molecular biology, vol. 3, pp. 435–498, Work, T.S., Work, E., eds. Elsevier/North-Holland, Amsterdam London New York

    Google Scholar 

  • Knacker, T., Ruzicka, J., Schaub, H. (1984) Effect of low oxygen concentration on the structure and function of chloroplasts of the C4-plant Amaranthus paniculatus L. Photosynthetica (in press)

  • Knacker, T., Schaub, H. (1982) Wachstums-und CO2-Gaswechsel-Charakteristik der C4-Pflanze Amaranthus paniculatus L. bei Anzucht in verschiedenen Sauerstoffkonzentrationen. Photosynthetica 16, 206–216

    Google Scholar 

  • Leech, R.M., Rumsby, M.G., Thomson, W.W. (1973) Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol. 52, 240–245

    Google Scholar 

  • Lück, H. (1962) Katalase. In: Methoden der enzymatischen Analyse, pp. 885–894, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Mackender, L.R.O., Leech, R.M. (1974) The galactolipid, phospholipid and fatty acid composition of the chloroplast envelope membranes of Vicia faba. Plant Physiol. 53, 496–502

    Google Scholar 

  • Mazliak, P. (1977) Glyco-and phospholipid of biomembranes in plants. In: Lipids and lipid polymers in higher plants, pp. 49–74, Tevini, M., Lichtenthaler, H.K., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Miflin, B.J., Beevers, H. (1974) Isolation of intact plastids from a range of plant tissues. Plant Physiol. 53, 870–874

    Google Scholar 

  • Müller, B., Göke, G. (1973) Gaschromatographische Bestimmung von Fettsäuren in Speisefetten und-ôlen. Lebensmittelchemie Gerichtl. Chemie 27, 165–175

    Google Scholar 

  • Mudd, J.B. (1980) Phospholipid biosynthesis. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 250–282, Stumpf, P.K., ed. Academic Press, New York London Toronto Sydney

    Google Scholar 

  • Pohl, P., Glasl, H., Wagner, H. (1970) Zur Analytik pflanzlicher Glyko-und Phospholipide und ihrer Fettsäuren. I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipide und quantitativen Bestimmung ihrer Fettsäuren-Zusammensetzung. J. Chromatogr. 49, 488–492

    Google Scholar 

  • Quinn, P.J., Williams, W.P. (1983) The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737, 223–266

    Google Scholar 

  • Raghavendra, A.S., Das, V.S.R. (1977) Aspartate-dependent alanine production by leaf discs of Amaranthus paniculatus, an aspartate utilizing NAD-malic enzyme type C4 plant. New Phytol. 79, 481–487

    Google Scholar 

  • Remy, R., Tremolieres, A., Duval, J.C., Ambard-Bretteville, F., Dubacq, J.P. (1982) Study of the supramolecular organization of light-harvesting chlorophyll protein (LHCP). Conversion of the oligomeric form into the monomeric one by phospholipase A2 and reconstitution with liposomes. FEBS Lett. 137, 271–275

    Google Scholar 

  • Roughan, P., Batt, R.D. (1968) Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal. Biochem. 22, 74–88

    Google Scholar 

  • Russell, N.J., Harwood, J.L. (1979) Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem. J. 181, 339–345

    Google Scholar 

  • Schaub, H., Höhler, T., Egle, E. (1974) Über den Einfluß des Sauerstoffs auf die Amaranthin-Synthese in Amaranthus paniculatus L. Z. Pflanzenphysiol. 74, 186–188

    Google Scholar 

  • Schaub, H., Köhler, T., Egle, K. (1975) Über den Einfluß des Sauerstoffs auf Stoffproduktion und tagesperiodische Schwankungen der CO2-Aufnahme. I. Eine kombinierte Anzuchts-und Meßkammer zur Bestimmung von Photosynthese und Atmung unter definierten Bedingungen. Photosynthetica 9, 261–267

    Google Scholar 

  • Schnarrenberger, C., Oeser, A., Tolbert, N.E. (1971) Development of microbodies in sunflower cotyledons and castor bean endosperm during germination. Plant Physiol. 48, 566–574

    Google Scholar 

  • Stumpf, P.K. (1980) Biosynthesis of saturated and unsaturated fatty acids. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 177–204, Stumpf, P.K., ed. Academic Press, New York London Toronto Sydney

    Google Scholar 

  • Suchanek, B., Schaub, H., Zickler, H.O. (1977) Der Einfluß verminderten Sauerstoffangebotes auf die Aktivität der Nitratreduktase in Amaranthus paniculatus. Z. Pflanzenphysiol. 84, 369–371

    Google Scholar 

  • Tevini, M. (1976) Veränderung des Glyko-und Phospholipidgehaltes während der Blattvergilbung. Planta 128, 167–171

    Google Scholar 

  • Tremolieres, A., Dubacq, J.P., Ambard-Bretteville, F., Remy, R. (1981) Lipid composition of chlorophyll-protein complexes. Specific enrichment in trans-hexadecenoic acid of an oligomeric form of light-harvesting chlorophyll a/b protein. FEBS Lett. 130, 27–31

    Google Scholar 

  • Tremolieres, A., Guillot-Salomon, T., Dubacq, J.P., Jaques, R., Mazliak, P., Signol, M. (1979) The effect of monochromatic light on α-linolenic and trans-3-hexadecenoic acids biosynthesis, and its correlation to the development of the plastid lamellar system. Physiol. Plant. 45, 429–436

    Google Scholar 

  • Tuquet, C., Guillot-Salomon, T., De Lubac, M., Signol, M. (1977) Granum formation and the presence of phosphatidylglycerol containing trans-Δ3-hexadecenoic acid. Plant Sci. Lett. 8, 59–64

    Google Scholar 

  • Ziegler, R., Egle, K. (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyll-Bestimmung. Beitr. Biol. Pflanz. 41, 11–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knacker, T., Schaub, H. The effect of low oxygen concentration on the acyl-lipid and fatty-acid composition of the C4 plant Amaranthus paniculatus L.. Planta 162, 441–449 (1984). https://doi.org/10.1007/BF00393457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393457

Key words

Navigation