Skip to main content
Log in

Acid-base status in the sea urchins Psammechinus miliaris and Echinus esculentus (Echinodermata: Echinoidea) during emersion

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The acid-base status of two sea urchins, Psammechinus miliaris (Gmelin) and Echinus esculentus (L.) during experimental emersion has been investigated. Sea urchins were collected from the Firth of Clyde between August and September 1987. The carbon dioxide capacity of the coelomic fluid of P. miliaris was greater than that of E. esculentus, although both were low and only marginally greater than that of sea water. The pH of the coelonic fluid was also low (7.05 to 7.17) and was influenced mainly by the internal partial pressure of CO2 (PCO 2). Acid-base disturbance in the coelomic fluid of both species during emersion, although minimal, was more pronounced in E. esculentus than in P. miliaris and was due primarily to an increase in the internal PCO 2, although there was an increase in the concentration of L-lactate in the coelomic fluid of E. esculentus. The coelomic fluid of both species was in a state of perfectly compensated respiratory acidosis. An increase in the concentration of divalent ions (Ca2+ and Mg2+) may be related to the dissolution of the test as a source of carbonate buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bianconcini, M. S. C., Medeiros, L. O., Medeiros, L. F., Mendes E. G., Valente, D. (1980). Glycolytic and hexosemonophosphate enzyme activities in the lantern muscles of the sea urchins, Arabacia lixula (Linn.), Echinometa luncunter (Linn.) and Lytechinus variegatus (Lamarck). Comp. Biochem. Physiol. 67B: 569–573

    Google Scholar 

  • Binyon, J. (1972). Physiology of echinoderms. Pergamon Press, Oxford

    Google Scholar 

  • Brown, W. I., Shick, J. M. (1979). Bimodal gas exchange and regulation of oxygen uptake in holothurians. Biol. Bull. mar. biol. Lab., Woods Hole 156: 272–288

    Google Scholar 

  • Burton, R. F. (1987). On calculating concentrations of “HCO3” from pH and PCO 2. Comp. Biochem. Physiol. 87A: 417–422

    Google Scholar 

  • Cameron, J. N. (1971). Rapid method for determination of total carbon dioxide in small blood samples. J. appl. Physiol. 31: 632–634

    Google Scholar 

  • Cameron, J. N. (1979). Excretion of CO2 in water-breathing animals—a short review. Mar. Biol. Lett. 1: 3–13

    Google Scholar 

  • Davenport, P. L. (1974). The ABC of acid-base chemistry. University of Chicago Press, Chicago

    Google Scholar 

  • DeFur, P. L., McMahon, B. R. (1984). Physiological compensation to short-term air exposure in red rock crabs, Cancer productus Randall, from littoral and sublittoral habitats. II. Acid-base balance. Physiol. Zoöl. 57: 151–160

    Google Scholar 

  • Doezema, P. (1969). Carbohydrates and carbohydrate metabolism of echinoderms. In: Florkin, M., Sheer, B. T. (eds.) Chemical zoology, Vol. 3. Academic Press, New York, p. 101–122

    Google Scholar 

  • Dugal, L. P. (1939). The use of calcareous shell to buffer the product of anaerobic glycolysis in Venus mercenaria. J. cell. comp. Physiol. 13: 235–251

    Google Scholar 

  • Ellington, W. R. (1976). L-lactate dehydrogenase in the longitudinal muscle of the sea cucumber Sclerodactyla briareus (Echinodermata: Holothuroidea). Mar. Biol. 36: 31–36

    Google Scholar 

  • Ellington, W. R., Lawrence, J. M. (1973). Malic and lactic dehydrogenase activities and ratios in regular and irregular echinoids (Echinodermata). Comp. Biochem. Physiol. 45B: 727–730

    Google Scholar 

  • Engel, P. C., Jones, J. B. (1978). Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: improved conditions for the assay of L-glutate, L-lactate and other metabolites. Analyt. Biochem. 88: 475–484

    Google Scholar 

  • Fagerlund, U. H. M. (1969). Lipid metabolism. In: Florkin, M., Sheer, B. T. (eds.) Chemical zoology, Vol. 3. Academic Press, New York, p. 123–134

    Google Scholar 

  • Farmanfarmaian, A. (1966). The respiratory physiology of echinoderms. In: Boolootian, R. A. (ed.) Physiology of Echinodermata. John Wiley & Sons, New York, p. 245–265

    Google Scholar 

  • Gutmann, I. A., Wahlefeld, W. (1974). L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, 2nd ed. Academic Press, New York, p. 1464–1468

    Google Scholar 

  • Harvey, H. W. (1955). The chemistry and fertility of sea waters. Cambridge University Press, Cambridge

    Google Scholar 

  • Henry, R. P., Kormanik, G. A., Smatresk, N. J., Cameron, J. N. (1981). The role of CaCO3 dissolution as a source of HCO 3 for the buffering of hypercapnic acidosis in aquatic and terrestrial decapod crustaceans. J. exp. Biol. 94: 269–274

    Google Scholar 

  • Howell, B. J., Rahn, H., Goodfellow, D., Herried, C. (1973). Acidbase regulation and temperature in selected invertebrates as a function of temperature. Am. Zool. 13: 557–563

    Google Scholar 

  • Houlihan, D. F., Duthie, G. (1981). Measurement of oxygen consumption and sampling of body fluids of echinoderms in situ. J. exp. mar. Biol. Ecol. 51: 97–106

    Google Scholar 

  • Hyman, L. H. (1955). The invertebrates, Vol. IV: Echinodermata. McGraw-Hill Inc., New York

    Google Scholar 

  • Johansen, K., Vadas, R. L. (1967). Oxygen uptake and responses to respiratory stress in sea urchins. Biol. Bull. mar. biol. Lab., Woods Hole 132: 16–22

    Google Scholar 

  • Magnum, C. P. (1973). Evaluation of the functional properties of invertebrate hemoglobins. Neth. J. Sea Res. 7: 305–315

    Google Scholar 

  • Magnum, C. P., Shick, J. M. (1972). The pH of body fluids of marine invertebrates. Comp. Biochem. Physiol. 42A: 693–697

    Google Scholar 

  • Mortensen, T. (1927). Handbook of the echinoderms of the British Isles. Oxford University Press, Oxford

    Google Scholar 

  • Murphy, C. T., Jones, M. B. (1987). Some factors affecting the respiration of intertidal Asterina gibbosa (Echinodermata: Asteroidea). J. mar. biol. Ass. U.K. 67: 717–728

    Google Scholar 

  • Newell, R. C. (1973). Factors affecting the respiration of intertidal invertebrates. Am. Zool. 13: 513–528

    Google Scholar 

  • Newell, R. C. (1979). Biology of intertidal animals. 3rd ed. Marine Ecological Surveys Ltd., Faversham, Kent

    Google Scholar 

  • Rahn, H. (1966). Aquatic gas exchange: theory. Respir. Physiol. 1: 1–12

    Google Scholar 

  • Reeves, R. B. (1977). The interaction of body temperature and acid-base balance in ectothermic vertebrates. A. Rev. Physiol. 39: 559–586

    Google Scholar 

  • Reid, D. M. (1935). The range of the sea-urchin Echinus esculentus. J. Anim. Ecol. 4: 7–16

    Google Scholar 

  • Reid, S. M., Northcote, D. H. (1981). Minimization of variation in the response of different proteins of the Coomassie Blue G dye binding assay for protein. Analyt. Biochem. 116: 65–68

    Google Scholar 

  • Robertson, J. D. (1939). The inorganic composition of the body fluids of three marine invertebrates. J. exp. Biol. 16: 387–397

    Google Scholar 

  • Ryabushko, V. I., Zhuchikhina, A. A., Lutsik, N. V. (1980). Effects of environmental oxygen concentrations on the level of metabolism in some echinoderms from the sea of Japan. Comp. Biochem. Physiol. 67B: 171–174

    Google Scholar 

  • Sarch, M. N. (1931). Die Pufferung der Körperflüssigkeiten bei Echinodermen. Z. vergl. Physiol. 14: 525–545

    Google Scholar 

  • Shick, J. M. (1983). Respiratory gas exchange in echinoderms. Echinoderm Stud. (Balkema, Rotterdam) 1: 67–110

    Google Scholar 

  • Spicer, J. I., Taylor, A. C. (1987). Carbon dioxide transport and acid-base regulation in the blood of the beach-hopper Orchestia gammarellus (Pallas) (Crustacea: Amphipoda). Ophelia 28: 49–61

    Google Scholar 

  • Toulmond, A. (1973). Tide-related changes of blood respiratory variables in the lugworm Arenicola marina L. Respir. Physiol. 19: 130–144

    Google Scholar 

  • Truchot, J. P. (1975). Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.) Respir. Physiol. 23: 351–360

    Google Scholar 

  • Truchot, J. P. (1981). L-équilibre acido-basique extracellulaire et sa régulation dans les divers groupes animaux. J. Physiol., Paris 77: 529–580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spicer, J.I., Taylor, A.C. & Hill, A.D. Acid-base status in the sea urchins Psammechinus miliaris and Echinus esculentus (Echinodermata: Echinoidea) during emersion. Mar. Biol. 99, 527–534 (1988). https://doi.org/10.1007/BF00392560

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392560

Keywords

Navigation