Skip to main content
Log in

The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)?

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In benthic invertebrates dispersal of planktotrophic larvae is generally considered more effective than is, for example, the rafting of adults or egg masses. It is certainly true that over short distances, viz., in the range of tens of kilometres or less, a moderately long-lived planktotrophic larva represents an effective mechanism of dispersal. However, turbulent mixing and mortality will decrease the concentration of planktotrophic larvae, and at some distance from the ancestral population the density of settlers may be too low to enable future matings between adults of low mobility. On the other hand, adults, juveniles or benthic egg masses drifted over long distances may colonize new habitats. The crucial point is the type of larval development of the organism. If the founder group belongs to a species with direct development or which produces very short-lived planktonic larvae, the low mobility of all life-stages will maintain a population within a restricted area so that mates will be likely to encounter each other even in a small population. Even if transport of benthic stages happens very rarely, this may be more influential than larval dispersal over long distances. To show that this may be true the detailed geographical distribution of two intertidal gastropod species with contrasting modes of development is presented and further support from the literature for this hypothesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abbott, R. T. (1972). American seashells. Van Nostrand Reinhold, New York

    Google Scholar 

  • Allen, J. A., Sheltema, R. S. (1972). The functional morphology and geographical distribution of Planktomya henseni, a supposed neotenus pelagic bivalve. J. mar. biol. Ass. U.K. 52: 19–31

    Google Scholar 

  • Arnaud, F., Arnaud, P. M., Intés, A., Le Loeuff, P. (1976). Transport d'invertebres benthique entre l'Afrique du Sud et Sainte Hélene par les laminaires (Phaeophyceae). Bull. Mus. Nat. d'hist. Nat. 384: 49–55

    Google Scholar 

  • Barsotti, G., Campani, E. (1982). Il promontorio di Castiglioncello (LI): III. Rinvenimento di una populazione di Littorina littorea (L.) — Moll. Gastropoda Prosobranchia. Quaderni Mus. St. Nat. Livorno 3: 65–71

    Google Scholar 

  • Bequaert, J. C. (1943). The genus Littorina in the western Atlantic. Johnsonia 7: 1–28

    Google Scholar 

  • Bird, J. B. (1968). Littorina littorea: Occurrence in a northern Newfoundland beach terrace, predating Norse settlements. Science, N.Y. 159: 114

    Google Scholar 

  • Birkeland, C. (1971). Biological observations on Cobb Seamount. North West Science, N.Y. 45: 193–199

    Google Scholar 

  • Boden, B. P. (1952). Natural conservation of insular plankton. Nature, Lond. 169: 697–699

    Google Scholar 

  • Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206

    Google Scholar 

  • Carefoot, T. (1977). Pacific seashores. Douglas & McIntyre, Vancouver

    Google Scholar 

  • Carlquist, S. (1974). Island biology. Columbia University Press, New York

    Google Scholar 

  • Carlton, J. T. (1982). The historical biogeography of Littorina littorea on the Atlantic coast of North America, and implications for the interpretation of the structure of New England intertidal communities. Malacol. Rev. 15: 146

    Google Scholar 

  • Carlton, J. T. (1985). Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Oceanogr. mar. Biol. A. Rev. 23: 313–371

    Google Scholar 

  • Chapman, A. R. O. (1986). Population and community ecology of seaweeds. In: Blaxter, J. H. S., Southward, A. J. (es.) Advances in marine biology. Vol. 23. Academic, London, p. 1–161

    Google Scholar 

  • Chia, F.-S. (1974). Classification and adaptive significance of developmental patterns in marine invertebrates. Thal. Jugosl. 10: 121–130

    Google Scholar 

  • Christiansen, F. B., Fenchel, T. (1979). Evolution of marine invertebrate reproductive patterns. Theor. Pop. Biol. 16: 267–282

    Google Scholar 

  • Clarke, A. H., Erskine, J. S. (1961). Pre-Columbian Littorina littorea in Nova Scotia. Science, N.Y. 134: 393–394

    Google Scholar 

  • Cohen, D. (1967). Optimization of seasonal migratory behavior. Am. Nat. 101: 5–17

    Google Scholar 

  • Crisp, D. J. (1958). The spread of Elminus modestus in North West Europe. J. mar. biol. Ass. U.K. 37: 483–520

    Google Scholar 

  • Crisp, D. J. (1974). Energy relations of marine invertebrate larvae. Thalassia Jugoslavica 10: 103–120

    Google Scholar 

  • Crisp, D. J. (1978). Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum, New York, 257–273

    Google Scholar 

  • Crisp, D. J., Southward, A. J. (1958). The distribution of intertidal organisms along the coasts of the English Channel. J. mar. biol. Ass. U.K. 37: 147–208

    Google Scholar 

  • Dautzenberg, P. (1893). Description d'une nouvelle espèce du genre Littorina, provenant des côtes de la Tunisie. J. de Conchyliologie 41: 35–36

    Google Scholar 

  • Davis, D. S. (1971). Variation in the northern rough periwinkle, Littorina saxatilis (Olivi) in Nova Scotia. Proc. N. S. Inst. Sci. 27: 61–90

    Google Scholar 

  • Emery, A. R. (1972). Eddy formation from an oceanic island: ecological effects. Carib. J. Sci. 12: 121–128

    Google Scholar 

  • Fretter, V., Graham, A. (1980). The prosobranch molluscs of Britain and Denmark. Part 5. Marine Littorinacea. J. moll. Stud. Suppl. 7

  • Fretter, V., Shale, D. (1973). Seasonal changes in population density and vertical distribution of prosobranch veligers in offshore plankton at Plymouth. J. mar. biol. Ass. U.K. 53: 471–492

    Google Scholar 

  • Gadgil, M. (1971). Dispersal: population consequences and evolution. Ecology 52: 253–261

    Google Scholar 

  • Gerlach, S. A. (1977). Means of meiofauna dispersal. Mikrofauna Meeresboden 61: 89–103

    Google Scholar 

  • Gofas, S. (1975). Sur l'extension de Littorina saxatilis (Olivi) (Moll. Gaster.) dans le detroit de Gibraltar. Bull. Soc. Sci. Nat. et Phys. du Marco 55: 95–99

    Google Scholar 

  • Hadfield, M. G. (1978). Growth and metamorphosis of planktonic larvae of Ptychodera flava (Hemichordata: Enteropneusta). In: Chia, F.-S., Rice, M. E. (1978). Settlement, and metamorphosis of marine invertebrate larvae. Elsevier, New York, p. 247–254

    Google Scholar 

  • Hawkins, S. J., Hiscock, K. (1983). Anomalies in the abundance of common eulittoral gastropods with planktonic larvae on Lundy Island, Bristol Channel. J. moll. Stud. 49: 86–88

    Google Scholar 

  • Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564

    Google Scholar 

  • Highsmith, R. C. (1885). Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25: 169–179

    Google Scholar 

  • Hines, A. H. (1986). Larval patterns in the life of brachyuran crabs (Crustacea, Decapoda, Brachyura). Bull. mar. Sci. 39: 444–466

    Google Scholar 

  • Hines, A. H. (1986b). Larval problems and perspectives in life histories of marine invertebrates. Bull. mar. Sci. 39: 506–525

    Google Scholar 

  • Hughes, R. N. (1979). South African populations of Littorina rudis. Zool. J. Linn. Soc. 65: 119–126

    Google Scholar 

  • Jablonski, D. (1986). Larval ecology and macroevolution in marine invertebrates. Bull. mar. Sci. 39: 565–587

    Google Scholar 

  • Jablonski, D. (1987). Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science, N.Y. 238: 360–363

    Google Scholar 

  • Jablonski, D., Flessa, K. W., Valentine, J. W. (1985). Biogeography and paleobiology. Paleobiology 11: 75–90

    Google Scholar 

  • Jablonski, D., Lutz, R. A. (1983). Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58: 21–89

    Google Scholar 

  • Jackson, J. B. C. (1986). Modes of dispersal of clonal benthic invertebrates: consequences for species' distributions and genetic structure of local populations. Bull. mar. Sci. 39: 588–606

    Google Scholar 

  • Janson, K. (1985). A morphologic and genetic analysis of Littorina saxatilis (Prosobranchia) from Venice, and on the problem of saxatilis-rudis nomenclature. Biol. J. Linn. Soc. 24: 51–59

    Google Scholar 

  • Janson, K. (1987). Genetic drift in small and recently founded populations of the marine snail Littorina saxatilis. Heredity 58: 31–37

    Google Scholar 

  • Kempf, S. C. (1981). Long-lived larvae of the gastropod Aplysia juliana: do they disperse or just slowly fade away? Mar. Ecol. Prog. Ser. 6: 61–65

    Google Scholar 

  • Kilburn, R. N. (1972). Taxonomic notes on South African marine mollusca (2), with the description of new species and subspecies of Conus, Nassarius, Vexillum and Demoulia. Ann. Natal. Mus. (Pietermaritzburg) 21: 391–437

    Google Scholar 

  • Knight, A. J., Hughes, R. N., Ward, R. D. (1987). A striking example of the founder effect in the mollusc Littorina saxatilis. Biol. J. Linn. Soc. 32: 417–426

    Google Scholar 

  • Knudsen, J. (1950). Egg capsules and development of some marine prosobranchs from tropical West Africa. Atlantide Report 1: 85–130

    Google Scholar 

  • Lobel, P. S., Robinson, A. R. (1986). Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep-Sea Res. (A), 33: 483–500

    Google Scholar 

  • Malone, C. R. (1965). Killdeer (Charadrius vociferus Linnaeus) as a means of dispersal for aquatic gastropods. Ecology 46: 551–552

    Google Scholar 

  • McDowall, R. M. (1968). Oceanic islands and endemism. Syst. Zool. 17: 346–350

    Google Scholar 

  • Mileikovsky, S. A. (1971). Types of larval development in marine bottom invertebrates their distribution and ecological significance: a reevaluation. Mar. Biol. 10: 193–213

    Google Scholar 

  • Moore, P. H. (1977). Additions to the littoral fauna of Rockall, with a description of Araeolaimus penelope sp.nov. (Nematoda: Axonolaimidae). J. mar. biol. Ass. U.K. 57: 191–200

    Google Scholar 

  • Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Res. 18: 789–802

    Google Scholar 

  • Palmer, A. R., Strathmann, R. R. (1981). Scale of dispersal in varying environments and its implications for life histories of marine invertebrates. Oecologia (Berl.) 48: 308–318

    Google Scholar 

  • Rosewater, J. (1975). An annotated list of the marine mollusks of Ascension Island, South Atlantic. Ocean. Smithsonian Contrib. Zool. No. 189

  • Scheltema, R. S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140: 284–322

    Google Scholar 

  • Scheltema, R. S. (1978). On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum, New York, p. 303–322

    Google Scholar 

  • Scheltema, R. S. (1986a). On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull. mar. Sci. 39: 290–322

    Google Scholar 

  • Scheltema, R. S. (1986b). Long-distance dispersal by planktonic larvae of shoal-water benthic invertebrates among central Pacific islands. Bull. mar. Sci. 39: 241–256

    Google Scholar 

  • Strathmann, R. R. (1974). The spread of sibling larvae of sedentary marine invertebrates. Amer. Nat. 108: 29–44

    Google Scholar 

  • Strathmann, R. R. (1978). Length of pelagic period in echinoderms with feeding larvae from the northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27

    Google Scholar 

  • Strathmann, R. R. (1986). What controls the type of larval development? Summary statement for the evolution session. Bull. mar. Sci. 39: 616–622

    Google Scholar 

  • Stroud, D. A., Knudsen, J. (1982). The demography and reproduction of Littorina rudis Maton, 1797 from Greenland. In: Fox, A. D., Stroud, D. A. (eds.) Report of the 1979 Greenland Whitefronted Goose Study Expedition to Equalungmiut Nunat, West Greenland. Aberystwyth, p. 257–267

  • Thorson, G. (1946). Reproduction and larval development of Danish marine bottom invertebrates. Medd. Komm. Danm. Fisk.-Og. Havunders. ser. Plankton 4: 1–523

    Google Scholar 

  • Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45

    Google Scholar 

  • Todd, C. D., Doyle, R. W. (1981). Reproductive strategies of marine benthic invertebrates: a settlement timing hypothesis. Mar. Ecol. Prog. Ser. 4: 75–83

    Google Scholar 

  • Vance, R. R. (1973). On reproductive strategies in marine benthic invertebrates. Am. Nat. 107: 339–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, K. The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)?. Mar. Biol. 99, 507–513 (1988). https://doi.org/10.1007/BF00392558

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392558

Keywords

Navigation