Skip to main content
Log in

The role of malate in ammonia assimilation in cotyledons of radish (Raphanus sativus L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

EDTA:

ethylenediamine-tetraacetic acid

GDH:

glutamate dehydrogenase

GOGAT:

glutamate synthase (glutamine: 2-oxoglutarate aminotransferase)

GOT:

aspartate aminotransferase (glutamate: oxaloacetate transaminase)

GS:

glutamine synthetase

HPLC:

high-performance liquid chromatography

MCF:

extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol.

MDH:

malate dehydrogenase

MSO:

L-methionine, sulfoximine

PEPCase:

phosphoenolpyruvate carboxylase

TLC:

thin-layer chromatography

References

  • Arima, Y. (1978) Glutamate synthase in rice root extracts and the relationship among electron donors, nitrogen donors and its activity. Plant Cell Physiol. 19, 955–961

    Google Scholar 

  • Beccari, E., D'Agnolo, G., Morpurgo, G., Pocchiari, F. (1969) Glucose and pyruvate metabolism in Daucus carota cells: The effect of the ammonium ion. J. Exp. Bot. 20, 110–112

    Google Scholar 

  • Ben Zioni, A., Vaadia, Y., Lips, S.H. (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol. Plant. 24, 288–290

    Google Scholar 

  • Bergmann, L., Grosse, W., Koth, P. (1976) Einfluß von Ammonium und Nitrat auf Stickstoff-Metabolismus, Malatanhäufung und Malatenzym-Aktivität in Suspensionskulturen von Nicotiana tabacum var. “SAMSUN”. Z. Pflanzenphysiol. 80, 60–70

    Google Scholar 

  • Bergmeyer, H.U., Bernt, E. (1974) Saccharose. In: Methoden der enzymatischen Analyse, vol 2, pp. 1143–1146, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Buchanan-Bollig, I.C., Kluge, M., Lüttge, U. (1980) PEP-Carboxylase activities and the regulation of CAM: effects of extraction procedures and leaf age. Z. Pflanzenphysiol. 97, 457–470

    Google Scholar 

  • Dahlbender, B., Strack, D. (1984) Nitrogen nutrition and the accumulation of free and sinapoyl-bound malic acid in Raphanus sativus cotyledons. Planta 161, 142–147

    Google Scholar 

  • Döhler, G., Zink, J. (1984) Trennung freier Aminosäuren aus Extrakten von Meeresdiatomeen mittels Hochleistungs-Flüssigkeits-Chromatographie (HPLC). Königsteiner Chromatographie-Tage, 208–220

  • Emes, M.J., Erismann, K.H. (1982) The influence of the nitrogen supply on the structure and activity of glycolate oxidase in Lemna minor L. Plant Sci. Lett. 27, 103–109

    Google Scholar 

  • Feige, B., Gimmler, H., Jeschke, V.D., Simonis, W. (1969) Eine Methode zur dünnschichtchromatographischen Auftrennung von 14C- und 32P-markierten Stoffwechselprodukten. J. Chromatogr. 41, 80–90

    Google Scholar 

  • Givan, C.V. (1979) Metabolic detoxification of ammonia in tissues of higher plants. Phytochemistry 18, 375–382

    Google Scholar 

  • Grover, S.D., Canellas, P.F., Wedding, R.T. (1981) Purification of NAD malic enzyme from potato and investigations of some physical and kinetic properties. Arch. Biochem. Biophys. 209, 396–407

    Google Scholar 

  • Guern, J., Mathieu, Y., Kurkdjian, A. (1983) Phosphoenolpyruvate carboxylase activity and its regulation of intracellular pH in plant cells. Physiol. Veg. 21, 855–866

    Google Scholar 

  • Hatch, M.D., Mau, S.L. (1973) Activity, location, and the role of aspartate aminotransferase and alanine aminotransferase isoenzymes in leaves with C4 pathway photosynthesis. Arch. Biochem. Biophys. 156, 195–206

    Google Scholar 

  • Hill, D., Burnworth, L., Skea, W., Pfeifer, R. (1982) Quantitative HPLC analysis of plasma amino acids as orthophthaldialdehyde/ethanethiol derivatives. J. Liquid Chromatogr. 5, 2369–2393

    Google Scholar 

  • Hock, B. (1973) Isoenzyme der Malatdehydrogenase aus Wassermelonenkeimlingen: Mikroheterogenität und deren Aufhebung bei der Samenkeimung. Planta 110, 329–344

    Google Scholar 

  • Hüsemann, W. (1981) Growth characteristics of hormone and vitamin independent cell suspension cultures from Chenopodium rubrum. Protoplasma 109, 415–431

    Google Scholar 

  • Knoll-Ewe, A. (1979) Der Einfluß der Stickstoffquelle auf den Malatstoffwechsel in Zellsuspensionen von Nicotiana tabacum var. “SAMSUN”. Doctoral thesis, University of Cologne, FRG

    Google Scholar 

  • Koth, P. (1973) Änderungen im Enzymmuster und im Stoffwechsel in Kalluskulturen von Nicotiana tabacum bei heterotropher und mixotropher Anzucht. Doctoral thesis, University of Cologne, FRG

    Google Scholar 

  • Latzko, E., Kelly, J. (1983) The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Vég. 21, 805–815

    Google Scholar 

  • Leegood, R.C., Ap Rees, T. (1978) Phosphoenolpyruvate carboxykinase and gluconeogenesis in cotyledons of Cucurbita pepo. Biochim. Biophys. Acta 524, 207–218

    Google Scholar 

  • Lips, S.H., Beevers, H. (1966) Compartmentation of organic acids in corn roots. I. Differential labeling of 2 malate pools. Plant Physiol. 41, 709–712

    Google Scholar 

  • Martin, F., Maudinas, B., Gadal, P. (1982a) Separation of o-phthaldialdehyde derivatives of free amino acids from plant tissue by isocratic reverse-phase high-performance liquid chromatography. Ann. Bot. 50, 401–406

    Google Scholar 

  • Martin, F., Suzuki, A., Hirel, B. (1982b) A new high-performance liquid chromatography assay for glutamine synthetase and glutamate synthase in plant tissue. Anal. Biochem. 125, 24–29

    Google Scholar 

  • McKenzie, E.A., Lees, E.M. (1981) Glutamate dehydrogenase activity in developing soybean seed: isolation and characterization of three forms of enzyme. Arch. Biochem. Biophys. 212, 290–297

    Google Scholar 

  • Miflin, B.J., Lea, P.J. (1980) Ammonia assimilation. In: The biochemistry of plants, vol. 5, pp. 169–202, Miflin, B.J., ed. Academic Press, London New York

    Google Scholar 

  • Möllering, H. (1974) Bestimmung der Malat-Dehydrogenase und Glutamat-Oxalacetat Transaminase. In: Methods of enzymatic analysis, 3rd edn., vol. 2, pp. 1636–1639, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim, Academic Press, New York London

    Google Scholar 

  • Mohanty, B., Fletcher, J.S. (1980) Ammonium influence on nitrogen assimilating enzymes and protein accumulation in suspension cultures of Paul's Scarlet rose. Physiol. Plant. 48, 453–459

    Google Scholar 

  • Murray, D.R., Kennedy I.R. (1980) Changes in activities of enzymes of nitrogen metabolism in seedcoats and cotyledons during embryo development in pea seeds. Plant Physiol. 66, 782–786

    Google Scholar 

  • Naik, M.S., Nicholas, D.J.D. (1986) Malate metabolism and its relation to nitrate assimilation in plants. Phytochemistry 25, 571–576

    Google Scholar 

  • Neyra, C.A., Hageman, R.H. (1976) Relationship between carbon dioxide, malate, and nitrate accumulation and reduction in corn (Zea mays L.). Plant Physiol 58, 726–730

    Google Scholar 

  • O'Neal, D., Joy, K.W. (1973) Glutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima. Arch. Biochem. Biophys. 159, 113–122

    Google Scholar 

  • Outlaw Jr., W.H., Manchester, J., Brown, P.H. (1981) High levels of malic enzyme activities in Vicia faba L. epidermal tissue. Plant Physiol. 68, 1047–1051

    Google Scholar 

  • Paul, J.S., Cornwell, K.L., Bassham, J.A. (1978) Effects of ammonia on carbon metabolism in photosynthesizing isolated mesophyll cells from Papaver somniferum L. Planta 142, 49–54

    Google Scholar 

  • Platt, S.G., Plaut, Z., Bassham, J.A. (1977) Ammonia regulation of carbon metabolism in photosynthesizing leaf discs. Plant Physiol. 60, 739–742

    Google Scholar 

  • Rhodes, D., Rendon, G.A., Stewart, G.R. (1976) The regulation of ammonia assimilating enzymes in Lemna minor. Planta 129, 203–210

    Google Scholar 

  • Rhodes, D., Sims, A.P., Folkes, B.F. (1980) Pathway of ammonia assimilation in illuminated Lemna minor. Phytochemistry 19, 357–365

    Google Scholar 

  • Roth, M. (1971) Fluorescence reactions for amino acids. Anal. Chem. 43, 880–882

    Google Scholar 

  • Schmitt, M.R., Edwards, G.E. (1983) Provisions or reductant for the hydroxypyruvate to glycerate conversion in leaf peroxisomes. A critical evaluation of the proposed malate/aspartate shuttle. Plant Physiol. 72, 728–734

    Google Scholar 

  • Seubert, W., Weicker, H. (1969) Pyruvate carboxylase from Pseudomonas. Meth. Enzymol. 13, 258–262

    Google Scholar 

  • Sharma, V., Strack, D. (1985) Vacuolar localization of 1-sinapoylglucose: L-malate sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus. Planta 163, 563–568

    Google Scholar 

  • Singh, R.P., Srivastava, H.S. (1986) Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol. Plant. 66, 413–416

    Google Scholar 

  • Skokut, T.A., Wolk, C.P., Thomas, J., Meeks, J.C., Shaffer, P.W., Chien, W.-S. (1978) Initial organic products of assimilation of [13N]ammonium and [13N]nitrate by tobacco cells cultured on different sources of nitrogen. Plant Physiol. 62, 299–304

    Google Scholar 

  • Sodek, L., Da Silva, W.J. (1977) Glutamate synthase: a possible role in nitrogen metabolism of the developing maize endosperm. Plant Physiol. 60, 602–605

    Google Scholar 

  • Somerville, C.R., Ogren, W.L. (1981) Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiol. 67, 666–671

    Google Scholar 

  • Strack, D. (1982) Development of 1-O-sinapoyl-β-D-glucose: L-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155, 31–36

    Google Scholar 

  • Strack, D., Pieroth, M., Scharf, H., Sharma, V. (1985) Tissue distribution of phenylpropanoid metabolism in cotyledons of Raphanus sativus L. Planta 164, 507–511

    Google Scholar 

  • Strack, D., Reinecke, J., Takeuchi, S. (1986a) Evidence for a relationship between malate metabolism and activity of 1-sinapoylglucose: L-malate sinapoyltransferase in radish (Raphanus sativus L.) cotyledons. Planta 167, 212–217

    Google Scholar 

  • Strack, D., Ruhoff, R., Gräwe, W. (1986b) Hydroxycinnamoylcoenzyme-A: tartronate hydroxycinnamoyltransferase in protein preparations from mung bean. Phytochemistry 25, 833–837

    Google Scholar 

  • Strack, D., Tkotz, N., Klug, M. (1978) Phenylpropanoid metabolism in cotyledons of Raphanus sativus and the effect of competitive in vivo inhibition of L-phenylalanine ammonia-lyase (PAL) by hydroxylamine derivatives. Z. Pflanzenphysiol 89, 343–353

    Google Scholar 

  • Svedas, V.J.K., Galaev, I.J., Borisov, I.L., Berizin, I. (1980) The interaction of amino acids with o-phthalaldehyde: a kinetic study and spectrophotometric assay of the reaction product. Anal. Biochem. 101, 188–192

    Google Scholar 

  • Ulrich, A. (1941) Metabolism of non-volatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Am. J. Bot. 28, 526–537

    Google Scholar 

  • Utter, M.F., Kohlenbrander, H.M. (1972) Formation of oxaloacetate by CO2 fixation on phosphoenolpyruvate. In: The enzymes, vol. 6, pp. 117–168, Boyer, P.D., ed. Academic Press, New York London

    Google Scholar 

  • Wakiuchi, N., Matsumoto, H., Takahashi, E. (1971) Changes of some enzyme activities of cucumber during ammonium toxicity. Physiol. Plant. 24, 248–253

    Google Scholar 

  • Wallsgrove, R.M., Harel, E., Lea, P.J., Miflin, B.J. (1977) Studies on glutamate synthase from the leaves of higher plants. J. Exp. Bot. 28, 588–596

    Google Scholar 

  • Woo, K.C., Canvin, D.T. (1980a) Effect of ammonia on photosynthetic carbon fixation in isolated spinach leaf cells. Can. J. Bot. 58, 505–510

    Google Scholar 

  • Woo, K.C., Canvin, D.T. (1980b) The role of malate in nitrate reduction in spinach leaves. Can. J. Bot. 58, 517–521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlbender, B., Strack, D. The role of malate in ammonia assimilation in cotyledons of radish (Raphanus sativus L.). Planta 169, 382–392 (1986). https://doi.org/10.1007/BF00392135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392135

Key words

Navigation