Skip to main content
Log in

Mechanism of liver-specific metastatic tumor spread in a murine tumor model

  • Original Papers
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

Malignant tumors frequently show an organ-specific metastatic spread, the causes of which are still largely unknown. Using an experimental tumor model, a methylcholanthrene-induced pleomorphic myofibrosarcoma ER 15-P of the C57 Bl6J mouse, we wanted to find out whether this phenomenon is due to an adaptation or to a selction of tumor cells. After i.v. injection of tumor cells from the primary ER 15-P into the tail vein of male mice, metastases were regularly found in the lungs, mediastinal lymph nodes, and brain, as well as in the liver and kidneys, and occasionally in the adrenals. The following experimental procedures were used to isolate a tumor cell line with a possible liver preference: (1) Tumor cells from the primary ER 15-P were injected into a mesenteric vein of male mice. Tumor cells from the resulting liver colonies were again injected into the portal system of one group of mice. In a second group, part of the same cell suspension was injected into the tail vein. This procedure was performed four times. (2) Tumor cells from the primary ER 15-P were applied into the tail vein of male mice. Tumor cells from the resulting liver metastases were reinjected directly into the tail vein. This experiment was repeated three times. (3) Tumor cells from the primary ER 15-P were injected into the tail vein of male mice. Tumor cells from liver metastases were then injected, first, into the portal system of one group of male mice, and thereafter into the tail vein of another group of animals. This experiment was repeated twice. The following results were obtained: (1) By a repeated adaptation of tumor cells from the primary ER 15-P to liver tissue, no tumor cell line could be isolated that would show a preferential metastic spread to this organ after tail-vein injection. (2) Repeated i.v. passages of tumor cells from liver metastases into the tail vein led to the selection of a tumor cell line with a tendency to liver metastasis. (3) Tumor cells selected from liver metastases induced via tailvein injection showed, after a prolonged stay in the liver and a successive i.v. passage into the tail vein, a marked specificity for this organ. These results indicate that the liver-specific spread of tumor cells in our model is based on the selection of a tumor cell line from the primary ER 15-P influenced by the hepatic microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams HI, Spiro R, Goldstein N (1950) Metastases in carcinoma. Analysis of 1 000 autopsied cases. Cancer 3:75–85

    Google Scholar 

  • Auerbach R, Wei CL, Pardon E, Gumkowski F, Kaminska G, Kaminski M (1987) Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res 46:1492–1496

    Google Scholar 

  • Barz H, Barz D (1982) Zur Verteilung der Metastasen der Lungengeschwülste. Arch Geschwulstforsch 52:561–568

    PubMed  Google Scholar 

  • Barz H, Barz D, Klemm P (1982) Zur Verteilung der Metastasen der Lungengeschwülste. Arch Geschwulstforsch 52:551–560

    PubMed  Google Scholar 

  • Beuth J, Ko HL, Oette K, Pulverer G, Roszkowski K, Uhlenbruck G (1987) Inhibition of liver metastasis in mice by blocking hepatocyte lectins with arabinogalactan infusions and D-galactose. J Cancer Res Clin Oncol 113:51–55

    PubMed  Google Scholar 

  • Bresalier RS, Hujanen ES, Raper SE, Roll FJ, Itzkowitz SH, Martin GF, Kim YS (1987) An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47:1398–1406

    PubMed  Google Scholar 

  • Brunson KW, Nicolson GL (1978) Selection and biologic properties of malignant variants of a murine lymphosarcoma. J Nat Cancer Inst 61:1499–1502

    PubMed  Google Scholar 

  • Brunson KW, Nicolson GL (1979) Selection of malignant melanoma variant cell lines for ovary colonization. J Supramol Struct 11:517–528

    PubMed  Google Scholar 

  • Brunson KW, Nicolson GL (1980) Experimental brain metastases. In: Weiss L, Gilbert HA, Posner JB (eds) Brain metastasis. Martinus Nijhoff, The Hague Boston London, pp 50–65

    Google Scholar 

  • Brunson KW, Beattie G, Nicolson GL (1978) Selection and altered properties of brain colonizing metastatic melanoma. Nature 272:543–545

    PubMed  Google Scholar 

  • Burger MM, Finne J, Prieels JP (1984) Mutants, revertants and variants of metastasis. Biochem Soc Trans 605:553–556

    Google Scholar 

  • Cheingsong-Popov R, Robinson P, Altevogt P, Schirrmacher V (1983) A mouse hepatocyte carbohydrate-specific receptor and its interaction with liver-metastasizing tumor cells. Int J Cancer 32:359–366

    PubMed  Google Scholar 

  • De la Monte SM, Moore GW, Hutchins GM (1984) Patterned distribution of metastases from malignant melanoma in humans. Cancer Res 43:3427–3433

    Google Scholar 

  • De la Monte SM, Hutchins GM, Moore GW (1984) Endocrine organ metastases from breast carcinoma. Am J Pathol 114:131–136

    PubMed  Google Scholar 

  • Edel G (1984) Tierexperimentelle Untersuchungen zur Organpräferenz von metastasierenden Tumoren. Verh Dtsch Ges Pathol 68:206–210

    Google Scholar 

  • Edel G, Grundmann E (1984) Selection of liver-colonizing tumor cells from a murine fibrosarcoma induced by methylcholanthrene. J Cancer Res Clin Oncol 108:274–280

    PubMed  Google Scholar 

  • Elliott RHE, Frantz VK (1960) Metastatic carcinoma masquerading as primary thyroid cancer: A report of author's 14 cases. Ann Surg 151:551–561

    PubMed  Google Scholar 

  • Ewing J (1928) Neoplastic disease, a treatise on tumors, 3rd edn. Saunders, Philadelphia pp 77–89

    Google Scholar 

  • Fidler IJ (1973) The relationship of embolic homogeneity number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227

    PubMed  Google Scholar 

  • Fidler IJ (1978) General considerations for studies of experimental cancer metastasis. In: Busch H (ed) Methods in cancer research vol XV. Academic Press, New York, pp 399–439

    Google Scholar 

  • Fidler IJ, Bucana C (1977) Mechanism of tumor cell resistance to lysis by syngeneic lymphocytes. Cancer Res 37:3945–3956

    PubMed  Google Scholar 

  • Fidler IJ, Kripke ML (1977) Metastasis results from pre-existing variant cells within a malignant tumor. Science 197:893–895

    PubMed  Google Scholar 

  • Fidler IJ, Nicolson GL (1976) Organ selectivity for implantation, survival and growth of B16 melanoma variant tumor cell lines. J Nat Cancer Inst 57:1199–1201

    PubMed  Google Scholar 

  • Fidler IJ, Gersten DM, Riggs CW (1977) Relationship of host immune status to tumor cell arrest, distribution, and survival in experimental metastasis. Cancer 40:46–55

    PubMed  Google Scholar 

  • Galton JE, Xue B, Hochwald GM, Thorbecke GJ (1982) Derivation of transplantable 7,12-dimethylbenz(a)anthracene-induced chicken fibrosarcoma lines: Differences in metastasizing properties and organ specificity. J Nat Cancer Inst 69:535–541

    PubMed  Google Scholar 

  • Gasic GJ (1984) Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev 3:99–166

    PubMed  Google Scholar 

  • Glaves D (1983) Correlation between circulating cancer cells and incidence of metastasis. Br J Cancer 48:665–673

    PubMed  Google Scholar 

  • Hansen HH, Muggia FM (1972) Staging of inoperable patients with bronchogenic carcinoma with special reference to bone marrow examination and peritoneoscopy Cancer 30:1395–1401

    PubMed  Google Scholar 

  • Hart IR (1982) “Seed and soil” revisited: Mechanisms of site specific metastasis. Cancer Metastasis Rev 1:5–17

    PubMed  Google Scholar 

  • Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B 16 melanoma. Cancer Res 40:2281–2287

    PubMed  Google Scholar 

  • Horak E, Darling DL, Tarin D (1986) Analysis of organ-specific effects on metastatic tumor formation by studies in vitro. J Nat Cancer Inst 76:913–922

    PubMed  Google Scholar 

  • Hujanen ES, Terranova VP (1985) Migration of tumor cells to organ-derived chemoattractants. Cancer Res 45:3517–3521

    PubMed  Google Scholar 

  • Jaffé N (1976) Neuroblastoma: review of the literature and an examination of factors contributing to its enigmatic character. Cancer Treat Rev 3:61–82

    PubMed  Google Scholar 

  • Jones CB, Goldrosen MH (1987) Characterization of a murine tumor of spontaneous origin with selective hepatic metastasis. Invasion Metastasis 7:144–157

    PubMed  Google Scholar 

  • Juacaba SF, Jones LD, Tarin D (1983) Organ preferences in metastatic colony formation by spontaneous mammary carcinoma after intraarterial inoculation. Invasion Metastasis 3:208–220

    PubMed  Google Scholar 

  • Kamenov B, Kieran MW, Leigh JB, Greenberg AH, Longenecker BM (1984) A new model for leukemia-lymphoma metastasis: differential growth and rejection of murine lymphoid-leukemia cell lines in the bone marrow. In: Nicolson GL, Milas L (eds) Cancer invasion and metastasis: biologic and therapeutic aspects. Raven Press, New York, pp 245–264

    Google Scholar 

  • Kawaguchi T Kawaguchi M, Dulski KM, Nicolson GL (1985) Cellular behavior of B 16 melanoma in experimental blood-borne implantation and cerebral invasion: an electrom microscopic study. Invasion Metastasis 5:16–30

    PubMed  Google Scholar 

  • Kieran MW, Longenecker BM (1983) Organ specific metastasis with special refeence to avian systems. Cancer Metastasis Rev 2:165–182

    PubMed  Google Scholar 

  • Kinsey DL (1960) An experimental study of preferential metastasis. Cancer 13:674–676

    PubMed  Google Scholar 

  • Kunze E, Reckels M, Eiardt B (1985) Der hamatogene Metastasiesungsmodus des Bronchialkarzinoms in Abhängigkeit von der Tumorgröße und vom metastatischen Lymphknotenbefall Pathologe 6:71–79

    PubMed  Google Scholar 

  • Layton MG, Franks LM (1984) Heterogeneity in a spontaneous mouse lung carcinoma. Selection and characterization of stable metastatic variants. Br J Cancer 49:415–421

    PubMed  Google Scholar 

  • Liotta LA, Kleinerman J, Saidel GM (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 34:889–894

    Google Scholar 

  • McGuire EJ, Mascali JJ, Grady SR, Nicolson GL (1984) Involvement of cell-cell adhesion molecules in liver colonizing by metastatic murine lymphoma/lymphosarcoma variants. Clin Exp Metastasis 2:213–222

    PubMed  Google Scholar 

  • Middelkoop OP, Bavel P van, Calafat J, Roos E (1985) Hepatocyte surface molecule involved in the adhesion of TA3 mammary carcinoma cells to rat hepatocyte cultures. Cancer Res 45:3825–3835

    PubMed  Google Scholar 

  • Miner KM, Kawaguchi T, Uba GW, Nicolson GL (1982) Clonal drift of cell surface melanogenic and experimental metastatic properties of in vivo-selected, brain meninges-colonizing murine B 16 melanoma. Cancer Res 42:4631–4638

    PubMed  Google Scholar 

  • Naito S, Giavazzi R, Fidler IJ (1987) Correlation between the in vitro interaction of tumor cells with an organ environmet and metastatic behavior in vitro. Invasion Metastasis 7:16–29

    PubMed  Google Scholar 

  • Netland PA, Zetter BR (1984) Organ-specific adhesion of metastatic tumor cells in vitro. Science 224:1113–1115

    PubMed  Google Scholar 

  • Netland PA, Zetter BR (1985) Metastatic potential of B16 melanoma cells after in vitro selection for organ-specific adherence. J Cell Biol 101:720–724

    Article  PubMed  Google Scholar 

  • Nicolson GL (1982a) Cell surface antigen heterogeneity and blood-borne tumor metastases. In: Owens AH Jr, Coffey DS, Baylin SB (eds) Tumor cell heterogeneity, origin and implications Academic Press, New York London, pp 83–97

    Google Scholar 

  • Nicolson GL (1982b) Cancer metastasis. Organ colonization and the cell surface properties of malignant cells. Biochim Biophys Acta 695:113–176

    Article  PubMed  Google Scholar 

  • Nicolson GL (1984) Cell surface molecules and tumor metastasis. Regulation of metastatic diversity. Exp Cell Res 3:25–42

    Google Scholar 

  • Nicolson GL (1987) Differential growth properties of metastatic large-cell lymphoma cells in target organ-conditioned medium. Exp Cell Res 169:572–577

    Google Scholar 

  • Nicolson GL, Custead SE (1982) Tumor metastasis is not due to adaptation of cells to a new organ environment. Science 215:176–178

    PubMed  Google Scholar 

  • Nicolson GL, Dulski KM (1986) Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer 38:289–294

    PubMed  Google Scholar 

  • Nicolson GL, Winkelhake JL (1975) Organ specificity of blood-borne tumour metastasis determined by cell adhesion? Nature 255:230–232

    PubMed  Google Scholar 

  • Nicolson GL, Birdwell CR, Brunson KW, Robbins JC, Beattie G, Fidler IJ (1977) Cell interactions in the metastatic process: some cell surface properties associated with successful blood-borne tumor spread. In: Cask JW, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, pp 225–241

    Google Scholar 

  • Nicolson GL, Brunson KW, Fidler IJ (1978) Specificity of arrest, survival and growth of selected metastatic variant cell lines. Cancer Res 38:4105–4111

    PubMed  Google Scholar 

  • Nicolson GL, Mascali JJ, McGuire EJ (1982) Metastatic RAW 117 lymphosarcoma as a model for malignant-normal cell interactions. Possible roles for cell surface antigens in determining the quantity and location of secondary tumors. Oncodev Biol Med 4:149–159

    PubMed  Google Scholar 

  • Nicolson GL, Dulski KM, Basson C, Welch DR (1985) Preferential organ attachment and invasion in vitro by B 16 melanoma cells selected for differing metastatic colonization and invasive properties. Invasion Metastasis 5:144–158

    PubMed  Google Scholar 

  • Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet I:571–573

    Article  Google Scholar 

  • Patel JK, Didolkar MK, Pickren JW, Moore RH (1978) Metastatic pattern of malignant melanoma. A study of 216 antopsy cases. Am J Surg 135:807–810

    Article  PubMed  Google Scholar 

  • Potter M, Fahay JL, Pilgrim HJ (1957) Abnormal serum protein and bone destruction in transmissible plasma cell neoplasm (multiple myeloma). Proc Soc Exp Biol Med 94:327–333

    PubMed  Google Scholar 

  • Potter KM, Juacaba SF Price JE, Tarin D (1983) Observations on organ distribution of fluorescein-labelled tumour cells released intravascularly. Invasion Metastasis 3:221–233

    PubMed  Google Scholar 

  • Price JE, Ankerman SL, Fidler IJ (1986) Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res 46:5172–5178

    PubMed  Google Scholar 

  • Proctor JW (1976) Rat sarcoma model supports both “soil-seed” and “mechanical” theories of metastatic spread. Br J Cancer 34:651–654

    PubMed  Google Scholar 

  • Prout GR Jr (1973) Prostate gland. In: Holland JF, Frei E (eds) Cancer medicine. Lea and Febiger, Philadelphia, pp 1680–1694

    Google Scholar 

  • Romansky SJ, Landing BH (1978) Metastatic patterns in childhood tumors. In: Weiss L, Gilbert HA (eds) Pulmonary metastasis, vol 1. Martinus Nijhoff. The Hague Boston London, pp 114–125

    Google Scholar 

  • Roos E (1984) Cellular adhesion, invasion, and metastasis. Biochim Biophys Acta 738:263–284

    Article  PubMed  Google Scholar 

  • Roos E, Tulp A, Middelkoop OP, van de Pavert IV (1984a) Interactions between lymphoid tumor cells and isolated liver endothelial cells. J Nat Cancer Inst 72:1173–1180

    PubMed  Google Scholar 

  • Roos E, Middelkoop OP, van de Pavert IV (1984b) Adhesion of tumor cells to hepatocytes: different mechanisms for mammary carcinoma compared with lymphosarcoma cells. J Nat Cancer Inst 73:963–969

    PubMed  Google Scholar 

  • Schirrmacher V (1984) Eigenschaften von Tumorzellen als Voraussetzung der Metastasierung: Untersuchungen zum metastatischen Phänotyp. Verh Dtsch Ges Pathol 68:12–17

    Google Scholar 

  • Schirrmacher V (1985) Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res 43:1–73

    PubMed  Google Scholar 

  • Schirrmacher V, Bosslet K, Shantz G, Clauer K, Hübsch D (1979) Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumor line revealed by cytotoxic T-lymphocytes. Int J Cancer 23:245–252

    PubMed  Google Scholar 

  • Schirrmacher V, Cheingsong-Popov R, Arnheiter H (1980) Hepatocyte-tumor cell interaction in vitro: I. Conditions for rosette formation and inhibition by anti-H-2 antibody. J Exp Med 151:984–989

    Article  PubMed  Google Scholar 

  • Schirrmacher V, Altevogt P, Fogel M, Dennis J, Waller CA, Barz D, Schwartz R, Cheingsong-Popov R, Springer G, Robinson PJ, Nebe T, Brossmer W, Vlodavsky I, Paweletz PJ, Zimmermann HP, Uhlenbruck G (1982) Importance of cell surface carbohydrates in cancer cell adhesion, invasion, and metastasis. Does sialic acid direct metastatic behavior? Invasion Metastasis 2:313–360

    Google Scholar 

  • Schlepper-Schäfer J, Friedrich E, Kolb H (1981) Galactosyl-specific receptor on liver cells: binding site for tumor cells. Eur J Cell Biol 25:95–102

    PubMed  Google Scholar 

  • Shearman PJ, Longenecker BM (1980) Selection for virulence and organ-specific metastasis of herpesvirus-transformed lymphoma cells. Int J Cancer 25:363–369

    PubMed  Google Scholar 

  • Shearman PJ, Longenecker BM (1981) Clonal variation and functional correlation of organ-specific metastasis and an organ-specific metastasis-associated antigen. Int J Cancer 27:387–395

    PubMed  Google Scholar 

  • Springer GF, Cheingsong-Popov R, Schirrmacher V, Desai PR, Tegtmeyer H (1983) Proposed molecular basis of murine tumor cell-hepatocyte interaction. J Biol Chem 258:5702–5706

    PubMed  Google Scholar 

  • Sugarbaker EV, Cohen AM (1972) Altered antigenicity in spontaneous pulmonary metastases from an antigenic murine sarcoma. Surgery 72:155–161

    PubMed  Google Scholar 

  • Talmadge JE, Fidler IJ (1982a) Cancer metastasis is selective or random depending on the parent tumor population. Nature 297:593–594

    PubMed  Google Scholar 

  • Talmadge JE, Fidler IJ (1982b) Enhanced metastatic potential of tumor cells harvested from spontaneous metastases of heterogenous murine tumors. J Nat Cancer Inst 69:975–980

    PubMed  Google Scholar 

  • Talmadge JE, Key MC, Hart IR (1981) Characterization of a murine ovarian reticulum cell sarcoma of histiocytic origin. Cancer Res 41:1271–1280

    PubMed  Google Scholar 

  • Tao T, Matter A, Vogel K, Burger MM (1979) Liver colonizing melanoma cells selected from B16 melanoma. Int J Cancer 23:854–857

    PubMed  Google Scholar 

  • Tarin D, Price JE, Kettlewell MGW, Souter RG, Vass ACR, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44:3584–3592

    PubMed  Google Scholar 

  • Uhlenbruck G, Beuth HJ, Oette R, Schotten T, Ko HL, Roszkowski R, Roszkowski W, Lütticken R, Pulverer G (1986a) Lektine und die Organotropie der Metastasierung. Dtsch Med Wochenschr 111:991–995

    PubMed  Google Scholar 

  • Uhlenbruck G, Beuth J, Oette K, Roszkowski W, Ko HL, Pulverer G (1986b) Prevention of exprerimental liver metastases by arabinogalactan. Naturwissenschaften 73:626–627

    PubMed  Google Scholar 

  • Updyke TV, Nicolson GL (1986) Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastatic potential. Clin Exp Metastasis 4:273–284

    PubMed  Google Scholar 

  • Varani J, Orr W, Ward PA (1979) Comparison of subpopulations of tumor cells with altered migratory activity, attachment characteristics, enzyme levels, and in vivo behavior. Eur J Cancer 15:585–592

    PubMed  Google Scholar 

  • Viadana E, Bross IDJ, Pickren JW (1973) An autopsy study on some routes of dissemination of cancer of the breast. Br J Cancer 27:336–340

    PubMed  Google Scholar 

  • Vollmers HP, Birchmeier W (1983) Monoclonal antibodies inhibit the adhesion of mouse B 16 melanoma cells in vitro and block lung metastatis in vivo. Proc Natl Acad Sci USA 80:3729–3733

    PubMed  Google Scholar 

  • Wang N, Yu SH, Liener IE, Hebbel RP, Eaton JW, McKhann CF (1982) Characterization of high- und low-metastatic clones derived from a methylcholanthrene-induced murine fibrosarcoma. Cancer Res 42:1046–1051

    PubMed  Google Scholar 

  • Weiss L (1980) Cancer cell traffic from the lungs to the liver: an example of metastatic inefficiency. Int J Cancer 25:385–392

    PubMed  Google Scholar 

  • Weiss L (1985) Principles of metastasis. Academic Press, Orlando London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Ministerium für Wissenchaft und Forschung Nordrhein-Westfalen, AZ IV B5-FA 9845

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edel, G. Mechanism of liver-specific metastatic tumor spread in a murine tumor model. J Cancer Res Clin Oncol 114, 47–58 (1988). https://doi.org/10.1007/BF00390485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390485

Key words

Navigation