Skip to main content
Log in

Zur Rolle von Plastocyanin und Cytochrom f im photosynthetischen Elektronentransport

The role of plastocyanin and cytochrome f in photosynthetic electron transport

  • Published:
Planta Aims and scope Submit manuscript

Summary

The dependence of photosynthetic NADP reduction on plastocyanin in three different fragmented systems from spinach chloroplasts was investigated.

  1. 1.

    In sonicated chloroplasts oxygen evolution and NADP reduction is restored by the addition of 3 mμmoles of plastocyanin obtained from spinach. Thirty mμmoles of cytochrome552 from Euglena replaces plastocyanin at pH 7.4 to about 75% and at pH 8.0 to only about 30%. NADP reduction at the expense of an artificial donor system by the same sonicated chloroplast preparation is, however, restored by plastocyanin and cytochrome552 equally well.

  2. 2.

    It is already well documented that in digitonin fragmented chloroplasts NADP reduction at the expense of an artificial donor system is stimulated by the addition of plastocyanin. Cytochrome552 from Euglena is as effective as plastocyanin in this system.

  3. 3.

    Heptane treatment of chloroplasts followed by water extraction also leads to the liberation of plastocyanin. NADP reduction in heptane treated chloroplasts at the expense of an artificial donor system is stimulated either by the addition of plastocyanin or of cytochrome552.

These results show that in three different types of particles from spinach chloroplasts both plastocyanin (spinach) and cytochrome552 (Euglena) are equally effective als electron donors for pigment system I of photosynthesis, coupled to NADP reduction. This conclusion follows from the fact that both are equally effective in stimulating NADP reduction at the expense of an artificial electron donor system. In sonicated chloroplasts plastocyanin seems to be the better electron acceptor for electrons coming from the photooxidation of water by light reaction II, since addition of plastocyanin to a system depending on oxygen evolution yields better rates than addition of cytochrome552.

In order to explain the result that there are two possible electron donors for pigment system I it is suggested that there are two-perhaps spatially separated-pigment systems I in photosynthesis which are participating in a non-cyclic or a cyclic electron transport system and which are either coupled to plastocyanin or to cytochrome f. The difference in rates mentioned above may indicate that plastocyanin is a component of non-cyclic and cytochrome f of cyclic electron flow. The cyclic system can be converted into a non-cyclic system by the addition of an artificial electron donor and NADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Amesz, J., and L. N. M. Duysens: Action spectrum, kinetics and quantum requirement of phosphopyridine nucleotide reduction and cytochrome oxidation in the blue-green alga Anacystis nidulans. Biochim. biophys. Acta (Amst.) 64, 261–278 (1962).

    Article  Google Scholar 

  • Anderson, J. M., and N. K. Boardman: Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim. biophys. Acta (Amst.) 112, 403–421 (1966).

    Google Scholar 

  • Arnon, D. I., and F. L. Crane: Role of quinones in photosynthetic reactions. In: Biochemistry of quinones, p. 433–458 (ed. R. A. Morton). London and New York: Academic Press 1965.

    Google Scholar 

  • Boardman, N. K., and J. M. Anderson: Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim. biophys. Acta (Amst.) 143, 187–203 (1967).

    Google Scholar 

  • Böger, P., and A. San Pietro: Ferredoxin and Cytochrome f in Euglena gracilis. Z. Pflanzenphysiol. 58, 70–75 (1967).

    Google Scholar 

  • Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B. 139, 327–345 (1952).

    Google Scholar 

  • Duysens, L. N. M.: Role of two photosynthetic pigment systems in cytochrome oxidation, pyridine nucleotide reduction, and fluorescence. Proc. roy. Soc. B 157, 301–313 (1963).

    Google Scholar 

  • —: Photosynthesis. Progress in biophysics, vol. 14, p. 1–104. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1964.

    Google Scholar 

  • Fork, D. C., and W. Urbach: Evidence for the localization of plastocyanin in the electron-transport chain of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1307–1315 (1965).

    Google Scholar 

  • Gerhardt, B., and A. Trebst: Photosynthetische Reaktionen in lyophilisierten Zellen der Blaualge Anacystis. Z. Naturforsch. 20b, 879–885 (1965).

    Google Scholar 

  • Gorman, D. S., and R. P. Levine: Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. nat. Acad. Sci. (Wash.) 54, 1665–1669 (1965).

    Google Scholar 

  • ——: Photosynthetic electron transport chain of Chlamydomonas reinhardi. VI. Electron transport in mutant strains lacking either cytochrome553 or, plastocyanin. Plant Physiol. 41, 1648–1656 (1966).

    Google Scholar 

  • Henninger, M. D., and F. L. Crane: Electron transport in chloroplasts. III. The role of plastoquinone c. J. biol. Chem. 242, 1155–1159 (1967).

    PubMed  Google Scholar 

  • Holton, R. W., and J. Myers: Cytochromes of a blue-green alga: extraction of a c-type with a strongly negative redox potential. Science 142, 234–235 (1963).

    PubMed  Google Scholar 

  • ——: Water-soluble cytochromes from a blue-green alga. I. Extraction, purification, and spectral properties of cytochromes c (549, 552, and 554, Anacystis nidulans). Biochim. biophys. Acta (Amst.) 131, 362–374 (1967).

    Google Scholar 

  • Jacobi, G.: Die photochemische Aktivität von Ultraschalldesintegrierten isolierten Chloroplasten. Z. Pflanzenphysiol. 57, 255–268 (1967).

    Google Scholar 

  • Katoh, S.: Crystallization of an algal cytochrome, Porphyra tenera-cytochrome553, Nature (Lond.) 186, 138–139 (1960a).

    Google Scholar 

  • —: A new copper protein from Chlorella ellipsoidea. Nature (Lond.) 186, 533–534 (1960b).

    Google Scholar 

  • —, and A. San Pietro: The role of plastocyanin in NADP photoreduction by chloroplasts. The Biochemistry of Copper, p. 407–422 (eds. Peisach, J., P. Aisen, and W. E. Blumberg). New York and London: Academic Press 1966.

    Google Scholar 

  • ——: The role of c-type cytochrome in the hill reaction with Euglena chloroplasts. Arch. Biochem. 118, 488–496 (1967).

    PubMed  Google Scholar 

  • —, and A. Takamiya: A new leaf copper protein “plastocyanin”, a natural hill oxidant. Nature (Lond.) 189, 665–666 (1961).

    Google Scholar 

  • ——: Photochemical reactions of plastocyanin in chloroplasts. Photosynthetic mechanisms of green plants, p. 262–272. National Academy of Sciences-National Research Council, Washington 1963a.

    Google Scholar 

  • ——: Light-induced reduction and oxidation of plastocyanin by chloroplast preparations. Plant Cell Physiol. 4, 335–347 (1963b).

    Google Scholar 

  • ——: Nature of copper-protein binding in spinach plastocyanin. J. Biochem. 55, 378–387 (1964).

    PubMed  Google Scholar 

  • ——: Restoration of NADP photoreducing activity of sonicated chloroplasts by plastocyanin. Biochim. biophys. Acta (Amst.) 99, 156–160 (1965).

    Google Scholar 

  • Kok, B., and H. J. Rurainski: Plastocyanin photo-oxidation by detergent-treated chloroplasts. Biochim. biophys. Acta (Amst.) 94, 588–590 (1965).

    Google Scholar 

  • ——, and E. A. Harmon: Photooxidation of cytochromes c, f, and plastocyanin by detergent treated chloroplasts. Plant Physiol. 39, 513–520 (1964).

    Google Scholar 

  • Lightbody, J. J., and D. W. Krogmann: Isolation and properties of plastocyanin from Anabaena variabilis. Biochim. biophys. Acta (Amst.) 131, 508–515 (1967).

    Google Scholar 

  • Nieman, R. H., and B. Vennesland: Photoreduction and photooxidation of cytochrome c by spinach chloroplast preparations. Plant Physiol. 34, 255–262 (1959).

    Google Scholar 

  • Perini, F., M. D. Kamen, and J. A. Schiff: Iron-containing proteins in Euglena. I. Detection and characterization. Biochim. biophys. Acta (Amst.) 88, 74–90 (1964).

    Google Scholar 

  • Shin, M., K. Tagawa, and D. I. Arnon: Crystallization of ferredoxin-TPN reductase and its role in the photosynthetic apparatus of chloroplasts. Biochem. Z. 338, 84–96 (1963).

    PubMed  Google Scholar 

  • Smillie, R. M.: Isolation of a new protein with photosynthetic pyridine nucleotide reductase activity. Plant Physiol. 38, XXVIII-XXIX (1963).

    Google Scholar 

  • —: Isolation of phytoflavin, a flavoprotein with chloroplast ferredoxin activity. Plant Physiol. 40, 1124–1128 (1965).

    Google Scholar 

  • Susor, W. A., and D. W. Krogmann: Triphosphopyridine nucleotide photoreduction with cell-free preparations of Anabaena variabilis. Biochim. biophys. Acta (Amst.) 120, 65–72 (1966).

    Google Scholar 

  • Tagawa, K., H. Y. Tsujimoto, and D. I. Arnon: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 49, 567–572 (1963).

    Google Scholar 

  • Trebst, A., u. H. Bothe: Zur Rolle des Phytoflavins im photosynthetischen Elektronentransport. Ber. dtsch. bot. Ges. 79, 44–47 (1966).

    Google Scholar 

  • —, u. E. Elstner: Zur Abhängigkeit der photosynthetischen NADP-Reduktion von Plastocyanin. Z. Naturforsch. 20b, 925–926 (1965).

    Google Scholar 

  • ——: Plastocyanin as cofactor of photosynthetic NADP+ reduction in digitonin-treated chloroplasts. In: Biochemistry of chloroplasts, vol. II, p. 531–536 (ed. T. W. Goodwin). London and New York: Academic Press 1967.

    Google Scholar 

  • —, u. E. Pistorius: Zur Rolle des Plastocyanins in der Photosynthese in isolierten Chloroplasten. Beiträge zur Biochemie und Physiologie von Naturstoffen. S. 491–499. Jena: VEB Gustav Fischer 1965.

    Google Scholar 

  • Vernon, L. P., B. Ke, S. Katoh, S. San Pietro, and E. R. Shaw: Properties of subchloroplast particles prepared by the action of digitonin, triton X-100, and sonication. Energy conversion by the photosynthetic apparatus. Brookhaven Symposia in Biol. No 19, 102–114 (1966).

    Google Scholar 

  • ——, and E. R. Shaw: Relationship of P700, electron spin resonance signal, and photochemical activity of a small chloroplast particle obtained by the action of triton X-100. Biochemistry 6, 2210–2220 (1967).

    PubMed  Google Scholar 

  • Wessels, J. S. C.: Isolation of a chloroplast fragment fraction with NADP+-photoreducing activity dependent on plastocyanin and independent of cytochrome f. Biochim. biophys. Acta (Amst.) 126, 581–583 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. R. Harder zum 80. Geburtstag gewidmet.

Botanisches Institut der Universität Köln.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elstner, E., Pistorius, E., Böger, P. et al. Zur Rolle von Plastocyanin und Cytochrom f im photosynthetischen Elektronentransport. Planta 79, 146–161 (1968). https://doi.org/10.1007/BF00390158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390158

Navigation