Skip to main content
Log in

Substrataufnahme und Phosphatstoffwechsel bei Ankistrodesmus braunii

I. Beteiligung der Polyphosphate an der Aufnahme von Glucose und 2-Desoxy-glucose im Dunkeln und im Licht

Uptake and phosphorylation of exogenous substrates in Ankistrodesmus braunii

I. Participation of polyphosphates in the uptake of glucose and 2-desoxy-glucose in dark and in light

  • Published:
Planta Aims and scope Submit manuscript

Summary

  1. 1.

    Like other photosynthesizing organisms which have been investigated, Ankistrodesmus braunii absorbs more glucose from the surrounding medium in the light than in the dark.

  2. 2.

    When the algae are incubated with glucose and 32P-labelled orthophosphate in short-time-experiments, the TCA-soluble organic phosphate fraction is markedly increased. No such effect is seen when 2-desoxy-glucose is administered to the algae instead of glucose.

  3. 3.

    In pre-labelled algae glucose causes an increase in the TCA-soluble acid-stable organic P-fraction which shows light-dependent saturation kinetics. In such experiments 2-desoxyglucose causes a linear increase in the acid-stable organic P-fraction which shows no light dependence.

  4. 4.

    DCMU and Antimycin A when given together block oxidative as well as light phosphorylation. These compounds do not, however inhibit the increase in the sugar-P-fraction caused by 2-desoxy-glucose in 32P-labelled algae.

  5. 5.

    The increase in the sugar-32P after administration of substrates to the algae is accompanied by a decrease in the fraction of the polyphosphates “C” and/or “D”.

  6. 6.

    These results are explained by assuming that an inorganic polyphosphate-glucose-phosphotransferase is active in Ankistrodesmus braunii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Augustin, H. W., G. Kopperschläger, H. Steffen und E. Hofmann: Hexokinase als begrenzender Faktor des anaeroben Glucoseverbrauches von Saccharomyces carlsbergensis NCYC 74. Biochim. biophys. Acta (Amst.) 110, 437–439 (1965).

    Google Scholar 

  • Avron, M.: Photophosphorylation by Swiss chard chloroplasts. Biochim. biophys. Acta (Amst.) 40, 257–272 (1960).

    Article  Google Scholar 

  • Bianchetti, R.: Azione della luce sull'assorbimento, l'utilizzazione ed il trasporto dei glucidi. G. Bot. ital. 70, 329–337 (1963).

    Google Scholar 

  • Cramer, F. B., and G. E. Woodward: 2-desoxy-D-glucose as an antagonist of glucose in yeast fermentation. J. Franklin Inst. 253, 354 (1952).

    Article  Google Scholar 

  • Dirheimer, G., et J.-P. Ebel: Mise en évidence d'une polyphosphate-glucose-phosphotransferase dans Corynebacterium xerosis. C. R. Acad. Sci. (Paris) 254, 2850–2852 (1962).

    Google Scholar 

  • ——: On the metabolism of inorganic Polyphosphates in Corynebacterium xerosis. C. R. Soc. Biol. (Paris) 158, 1948 (1964).

    Google Scholar 

  • ——: Caractérisation d'une polyphosphate-AMP-Phosphotransferase dans Corynebacterium xerosis. C. R. Acad. Sci. (Paris) 260, 3787–3790 (1965).

    Google Scholar 

  • Folin, O., and H. Wu: A system of blood analysis. I. A simplified and improved method for determination of sugar. J. biol. Chem. 43, 149 (1922).

    Google Scholar 

  • Gimmler, H.: Diss. Würzburg 1967.

  • Goulding, K. H., and M. J. Merrett: The photometabolism of acetate by Chlorella pyrenoidosa. J. exp. Bot., 17, 678–689 (1966).

    Google Scholar 

  • Harold, F. M., and R. L. Harold: Degradation of inorganic polyphosphate in mutants of Aerobacter aerogenes. J. Bact. 89, 1262–1270 (1965).

    PubMed  Google Scholar 

  • Heredia, C. F., G. de la Fuente, and A. Sols: Metabolic studies with 2-deoxyhexoses. I. Mechanisms of inhibition of growth and fermentation in baker's yeast. Biochim. biophys. Acta (Amst.) 86, 216–223 (1964).

    Google Scholar 

  • Hoare, D. S., and R. B. Moore: Photoassimilation of organic compounds by autotrophic blue-green algae. Biochim. biophys. Acta (Amst.) 109, 622–625 (1965).

    Google Scholar 

  • Hoffmann-Ostenhoff, O.: Proceedings of the Inst. Symposion on Enzyme Chemistry Tokyo and Kyoto, p. 180–189. Tokyo: The University of Tokyo Press 1957.

    Google Scholar 

  • Jeschke, W. D.: Die cyclische und die nichtcyclische Photophosphorylierung als Energiequellen der lichtabhängigen Chloridionenaufnahme bei Elodea. Planta (Berl.) 73, 161–174 (1967).

    Google Scholar 

  • —, u. W. Simonis: Über die Aufnahme von Phosphat-und Sulfationen durch Blätter von Elodea densa und ihre Beeinflussung durch Licht, Temperature und Außenkonzentrationen. Planta (Berl.) 67, 6–32 (1965).

    Google Scholar 

  • Kaden-Domanski, J.: Diss. Würzburg 1965.

  • Kanai, R., S. Aoki, and S. Miyachi: Quantitative separation of inorganic polyphosphates in Chlorella cells. Plant and Cell Phys. 6, 467–473 (1965).

    Google Scholar 

  • —, Miyachi, S., and S. Miyachi: Light-induced formation and mobilization of polyphosphate “C” in Chlorella cells. Microalgae and Photosynthetic Bacteria. p. 613–618. Tokyo: The University of Tokyo Press 1963.

    Google Scholar 

  • Kanai, R., u. W. Simonis: Einbau von 32P in verschiedene, Phosphatfraktionen, besonders Polyphosphate, bei einzelligen Grünalgen (Ankistrodesmus braunii) im Licht und im Dunkeln. Arch. Mikrobiol. (1967) (im Druck).

  • Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. II. Gesteigerter Glucoseeinbau im Licht als Indikator einer lichtabhängigen Phosphorylierung. Z. Naturforsch. 9b, 625–644 (1954).

    Google Scholar 

  • —: Eine Methode zur quantitativen Bestimmung der Lichtphosphorylierungsgeschwindigkeit. Naturwissenschaften 42, 390 (1955).

    Google Scholar 

  • —, u. J. Haberer-Liesenkötter: Über den Zusammenhang zwischen Phosphathaushalt und Photosynthese. V. Regulation der Glykolyse durch die Lichtphosphorylierung bei Chlorella. Z. Naturforsch. 18b, 718–730 (1963).

    Google Scholar 

  • Kornberg, A., S. R. Kornberg, and E. S. Simms: Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. biophys. Acta (Amst.) 20, 215–227 (1956).

    Article  Google Scholar 

  • Kornberg, S. R.: Adenosine triphosphate synthesis from metaphosphate by an enzyme from Escherichia coli. Biochim. biophys. Acta (Amst.) 26, 294–300 (1957).

    Article  Google Scholar 

  • Letnansky, K.: Der Einfluß von Glucose auf die Phosphorylierung von 2-Desoxy-D-Glucose und den Gehalt an Adeninnucleotiden in Ehrlich-Ascites-Carcinomzellen. Biochem. Z. 341, 74–84 (1964).

    PubMed  Google Scholar 

  • Macrobbie, E. A. C.: Factors affecting the fluxes of potassium and chloride ions in Nitella translucens. J. gen. Physiol. 47, 859–877 (1964).

    Article  Google Scholar 

  • —: The nature of the coupling between light and active ion transport in Nitella translucens. Biochim. biophys. Acta (Amst.) 94, 64–73 (1965).

    Google Scholar 

  • Miyachi, S.: Metabolism of inorganic polyphosphates in growing Chlorella cells. Photosynthetic mechanisms of green plants (B. Kok and A. T. Jagendorf, eds.), p. 688–697. Washington DC.: Natl. Res. Council Publication No 1145, 1963.

  • —, R. Kanai, S. Mihara, S. Miyachi, and S. Aoki: Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim. biophys. Acta (Amst.) 93, 625–634 (1964).

    Google Scholar 

  • Mostafa, I. Y.: Diss. Würzburg 1960.

  • Pirson, A., u. H. G. Ruppel: Über die Induktion einer Teilungshemmung in synchronen Kulturen von Chlorella. Arch. Mikrobiol. 42, 299–309 (1962).

    PubMed  Google Scholar 

  • Sauermann, G.: Vergleich des Einflusses einiger Glykolysehemmstoffe auf die Glucoseoxydation in Ascites-Tumorzellen Naturwissenschaften 53, 87–88 (1966).

    Google Scholar 

  • Simonis, W.: Problems of photosynthetic phosphorylation in vivo by unicellular algae (Ankistrodesmus). Currents in Photosynthesis, p. 217–223. Proc. 2nd W.-Europ. Conf. Photosynth. Rotterdam 1966.

  • Szymona, M., and W. Ostrowski: Inorganic polyphosphate glucokinase of Mycobacterium phlei. Biochim. biophys. Acta (Amst.) 85, 283–292 (1964).

    Google Scholar 

  • Tanner, W., L. Dächsel, and O. Kandler: Effects of DCMU and antimycin A on photoassimilation of glucose in Chlorella. Plant Physiol. 40, 1151–1156 (1965).

    Google Scholar 

  • Urbach W.: Diss. Würzburg 1961.

  • —, and W. Simonis: Inhibitor studies on the photophosphorylation in vivo by unicellular algae (Ankistrodesmus) with Antimycin A, HQNO, Salicylaldoxime and DCMU. Biochem. biophys. Res. Commun. 17, 39–45 (1964).

    Google Scholar 

  • Wick, A. N., D. R. Drury, H. E. Nakada, and J. B. Wolfe: Localization of the primary metabolic block produced by 2-desoxy-glucose. J. biol. Chem. 224, 963–969 (1957).

    PubMed  Google Scholar 

  • Yanagita, T.: Successive determinations of the free, acidlabile and residual phosphates in biological systems. J. Biochem. 55, 260–268 (1964).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Harder zum 80. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysek, G., Simonis, W. Substrataufnahme und Phosphatstoffwechsel bei Ankistrodesmus braunii . Planta 79, 133–145 (1968). https://doi.org/10.1007/BF00390157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390157

Navigation