Skip to main content
Log in

The specificity of the auxin transport system

  • Published:
Planta Aims and scope Submit manuscript

Summary

In an effort to examine the specificity of the auxin transport system, the movement of a variety of growth substances and of auxin analogues through corn coleoptile sections was measured in both the basipetal and acropetal directions. In contrast to the basipetal, polar transport of the auxins indoleacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid, no such movement was found for benzoic acid or for gibberellin A1. A comparison of the α- and β-isomers of naphthaleneacetic acid showed that the growth-active α-form is transported, but not the inactive β-analogue. Both the dextro (+) and leavo (-) isomer of 3-indole-2-methylacetic acid showed the basipetal movement characteristic of IAA, the dextro isomer being more readily transported than the (-)-form. In this instance, too, the transport was roughtly proportional to the growth promoting activity. The antiauxin p-chlorophenoxyisobutyric acid inhibited auxin transport as it inhibited auxin-induced growth. These results agree with the hypothesis that processes involved in auxin transport are closely linked to or even identical with the primary auxin action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clor, M. A.: Translocation of tritium-labeled gibberellic acid in pea stem segments and potato tuber cylinders. Nature (Lond.) 214, 1263–1264 (1967).

    Google Scholar 

  • Dörffling, K., u. M. Böttger: Transport von Abscisinsäure in Explantaten, Blattstiel- und Internodialsegmenten von Coleus rheneltianus. Planta (Berl.) 80, 299–308 (1968).

    Google Scholar 

  • Evans, E. C., III, and B. E. Vaughan: Wounding response in relation to polar transport of radiocalcium in isolated root segments of Zea mays. Plant Physiol. 41, 1145–1151 (1966).

    Google Scholar 

  • Evans, M. L., and P. M. Ray: Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. gen. Physiol., 53, 1–20 (1969).

    Google Scholar 

  • —, and R. Hokanson: Timing of the response of coleoptiles to application and withdrawal of various auxins. Planta (Berl.), 85, 85–95 (1969).

    Google Scholar 

  • Foster, R. J., D. H. McRae, and J. Bonner: Auxin-antiauxin interaction at high auxin concentrations. Plant Physiol. 30, 323–327 (1955).

    Google Scholar 

  • Fox, J. E., and J. S. Weis: Transport of the kinin, N6-benzyladenine: non-polar or polar. Nature (Lond.) 206, 678–679 (1965).

    Google Scholar 

  • Gomori, G.: Preparation of buffers for use in enzyme studies. In: Methods of enzymology (S. P. Colowick and N. O. Kaplan, eds.), vol. I, p. 138–146. New York: Acad. Press 1955.

    Google Scholar 

  • Hartt, C. E.: Light and translocation of C14 in detached blades of sugar cane. Plant Physiol. 40, 718–724 (1965).

    Google Scholar 

  • Hertel, R., u. A. C. Leopold: Versuche zur Analyse des Auxintransports in der Koleoptile von Zea mays L. Planta (Berl.) 59, 535–562 (1963).

    Google Scholar 

  • —, and R. Flory: Auxin movement in corn coleoptiles. Planta (Berl.) 82, 123–144 (1968).

    Google Scholar 

  • Horton, R. F., and R. A. Fletcher: Transport of the auxin, pichloram, through petioles of bean and Coleus and stem sections of pea. Plant Physiol. 43, 2045–2048 (1968).

    Google Scholar 

  • Jacobs, W. P.: Control of elongation in the bean hypocotyl by the ability of the hypocotyl tip to transport auxin. Amer. J. Bot. 37, 551–555 (1950).

    Google Scholar 

  • —: Hormonal regulation of leaf abscission. Plant Physiol. 43, 1480–1495 (1968).

    Google Scholar 

  • Jaffe, L. F.: Electrical currents through the developing Fucus egg. Proc. nat. Acad. Sci. (Wash.) 56, 1102–1109 (1966).

    Google Scholar 

  • Joensson, A.: Chemical structure and growth activity of auxins and antiauxins. Handb. Pflanzenphysiol. (W. Ruhland, ed.), vol. XIV, p. 959–1006 Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Kaindl, K.: The action-concentration curves of mixtures of growth-promoting and growth-inhibiting substances. In: The chemistry and mode of action of plant growth substances (R. L. Wain and F. Wightman, eds.), p. 159–164. London: Butterworth 1956.

    Google Scholar 

  • Keitt, G. W.: Auxin activity of substituted benzoic acids and their effect on polar auxin transport. Plant Physiol. 41, 1561–1569 (1966).

    Google Scholar 

  • Kende, H. J.: Preparation of radioactive gibberellin A1 and its metabolism in dwarf peas. Plant Physiol. 42, 1612–1618 (1967).

    Google Scholar 

  • Kutácek, M., et Z. Prochazka: Methodes de determination et d'isolement de composés indoliques chez les Crucifères. In: Régulateurs naturels de la croissance végétale, p. 445–455, Paris: C.N.R.S. 1964.

    Google Scholar 

  • Leopold, A. C.: Plant Growth and Development, p. 116. New York: McGraw-Hill 1964.

    Google Scholar 

  • —, and S. L. Lam: Polar transport of three auxins. In: Plant growth regulators (R. M. Klein, ed.), p. 411–418. Ames: Iowa State Univ. Press 1961.

    Google Scholar 

  • McCready, C. C.: Movement of growth regulators in plants. I. Polar transport of 2,4-dichlorophenoxyacetic acid in segments from the petioles of Phaseolus vulgaris. New Phytologist 62, 3–18 (1963).

    Google Scholar 

  • —: Translocation of growth regulators. Ann. Rev. Plant Physiol. 17, 283–294 (1966).

    Google Scholar 

  • —. New Phytologist 62, 19–34 (1963).

    Google Scholar 

  • Niedergang-Kamien, E., and A. C. Leopold: The inhibition of transport of indoleacetic acid by phenoxyacetic acids. Physiol. Plantarum (Copenh.) 12, 776–785 (1959).

    Google Scholar 

  • Schlender, K. K.: Synthesis and physiological activity of several indole-3-alkanoic acids. Dissert. (M.S.), Michigan State University, East Lansing (1963).

    Google Scholar 

  • Steeves, T. A., and W. R. Briggs: Morphogenetic studies on Osmunda cinnamonea L. J. exp. Bot. 11, 45–67 (1960).

    Google Scholar 

  • Stowe, B. B., and J. F. Schilke: Submicrogram identification and analysis of indole auxin by gas chromatography and spectrophotofluorometry. In: Régulateurs naturels de la croissance végétale, p. 409–419. Paris: C.N.R.S. 1964.

    Google Scholar 

  • Thimann, K. V., and W. D. Bonner Jr.: The action of tri-iodobenzoic acid on growth. Plant Physiol. 23, 158–161 (1948).

    Google Scholar 

  • Udenfriend, S.: Fluorescence assay in biology and medicine. New York: Acad. Press 1962.

    Google Scholar 

  • Veen, H.: On the relation between auxin transport and auxin metabolism in explants of Coleus. Planta (Berl.) 73, 281–295 (1967).

    Google Scholar 

  • Zaerr, J. B., and J. W. Mitchell: Polar transport related to mobilization of plant constituents. Plant Physiol. 42, 863–874 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertel, R., Evans, M.L., Leopold, A.C. et al. The specificity of the auxin transport system. Planta 85, 238–249 (1969). https://doi.org/10.1007/BF00389401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389401

Keywords

Navigation