Skip to main content
Log in

The association of N2-fixing bacteria with sea urchins

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Dinitrogen fixation associated with bacteria in the gastrointestinal tract of sea urchins appears to be a widespread phenomenon: sea urchins from the tropics (Diadema antillarum, Echinometra lacunter, Tripneustes ventricosus), the temperature zone (Strongylocentrotus droebachiensis) and the arctic (S. droebachiensis) exhibited nitrogenase activity (C2H2 reduction). Pronounced seasonal variation was found in nitrogenase activity of temperate sea urchins feeding on kelp (Laminaria spp.) and eelgrass (Zostera marina). The mean monthly nitrogenase activity was inversely correlated with the nitrogen content of the sea urchin's food, which varied up to fivefold over the course of a year. The highest rate of nitrogenase activity recorded for a temperate sea urchin during the 14 month sampling period was 11.6μg N fixed g wet wt-1 d-1, with a yearly mean activity of 1.36 μg N fixed g wet wt-1 d-1. Studies with 15N confirmed the C2H2 reduction results and showed incorporation of microbially-fixed nitrogen into S. droebachiensis demonstrating that N2 fixation can be a source of N for the sea urchin. Laboratory experiments indicated that part of the sea urchin's (S. droebachiensis) normal gastrointestinal microflora is responsible for the observed nitrogenase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Beeson, R. J. and P. T. Johnson: Natural bacterial flora of the bean clam, Donax gouldi. J. Invert. Pathol. 9, 104–110 (1967)

    Google Scholar 

  • Benemann, J. R.: Nitrogen fixation in termites. Science, N. Y. 181, 164–165 (1973)

    Google Scholar 

  • Bergersen, F. J. and E. H. Hipsley: The presence of N2-fixing bacteria in the intestines of man and animals. J. Gen. Microbiol. 60, 61–65 (1970)

    PubMed  Google Scholar 

  • Boyd, C. E. and C. P. Goodyear: Nutritive quality of food in ecological systems. Arch. Hydrobiol. 69, 256–270 (1971)

    Google Scholar 

  • Bremner, J. M. and A. P. Edwards: Determination and isotoperatio analysis of different forms of nitrogen in soils. I. Apparatus and procedures for distillation of ammonium. Soil Sci. Soc. Am. Proc. 29, 504–507 (1965)

    Google Scholar 

  • Breznak, J. A.: Symbiotic relationships between termites and their intestinal microbiota. In: Symbiosis (Society for Experimental Biology Symposium Ser., no. 29), pp 559–580. Ed. by D. H. Jenning and D. L. Lee. Cambridge University Press 1975

  • Breznak, J. A., W. J. Brill, J. W. Mertins and H. C. Cooper: Nitrogen fixation in termites. Nature, Lond. 244, 577–580 (1973)

    Google Scholar 

  • Burkholder, P. R., L. M. Burkholder and L. R. Almodovar: Nutritive constituents of some Caribbean marine algae. Bot. Mar. 14, 132–135 (1971)

    Google Scholar 

  • Carpenter, E. J. and J. L. Culliney: Nitrogen fixation in marine shipworms. Science, N. Y. 187, 551–552 (1975)

    Google Scholar 

  • Chapman, A. R. O. and J. S. Craigie: Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977)

    Google Scholar 

  • Chapman, A. R. O. and J. E. Lindley: Seasonal growth of Laminaria solidungula in the Canadian High Arctic in relation to irradiance and dissolved nutrient concentrations. Mar. Biol. 57, 1–5 (1980)

    Google Scholar 

  • Cochran, W. G.: Estimation of bacterial densities by means of the “Most Probable Number”. Biometrics 6, 105–116 (1950)

    PubMed  Google Scholar 

  • Colwell, R. R. and J. Liston: Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl. Microbiol. 8, 104–109 (1960)

    PubMed  Google Scholar 

  • Colwell, R. R. and J. Liston: The natural bacterial flora of certain marine invertebrates. J. Insect Pathol. 4, 23–33 (1962)

    Google Scholar 

  • Dilworth, M. J.: Dinitrogen fixation. Ann. Rev. Plant. Physiol. 25, 81–114 (1974)

    Article  Google Scholar 

  • Ebert, T. A.: Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49, 1075–1091 (1968)

    Google Scholar 

  • Elleway, R. F., J. R. Sabine and D. J. D. Nicholas: Acetylene reduction by rumen microflora. Arch. Mikrobiol. 76, 277–291 (1971)

    PubMed  Google Scholar 

  • Emlen, J. M.: Ecology: An evolutionary approach, 493 pp. Reading: Addison-Wesley Pub. Co. 1973

    Google Scholar 

  • Farmanfarmaian, A. and J. H. Phillips: Digestion, storage and translocation of nutrients in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull. 123, 105–120 (1962)

    Google Scholar 

  • Fiedler, R. and G. Proksch: The determination of 15N by emission and mass spectrometry in biochemical analysis: a review. Anal. Chim. Acta 78, 1–62 (1975)

    Article  Google Scholar 

  • Fong, W. and K. H. Mann: Role of gut flora in the transfer of amino acids through a marine food chain. Can. J. Fish. Aquat. Sci. 37, 88–96 (1980)

    Google Scholar 

  • Fuji, A.: Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ. 15, 83–160 (1967)

    Google Scholar 

  • Granhall, U. and P. Ciszuk: Nitrogen fixation in rumen contents indicated by the acetylene reduction test. J. Gen. Microbiol. 65, 91–93 (1971)

    PubMed  Google Scholar 

  • Guerinot, M. L. and D. G. Patriquin: N2-fixing vibrios isolated from the gastrointestinal tract of sea urchins. Can. J. Microbiol. 27, 311–317 (1981)

    PubMed  Google Scholar 

  • Guerinot, M. L., W. Fong and D. G. Patriquin: Nitrogen fixation (acetylene reduction) associated with sea urchins (Strongylocentrotus droebachiensis) feeding on seaweeds and eelgrass. J. Fish. Res. Bd Can. 34, 416–420 (1977)

    Google Scholar 

  • Hardy, R. W. F., R. D. Holsten, E. K. Jackson and R. C. Burns: The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968)

    Google Scholar 

  • Harrison, P. G. and K. H. Mann: Chemical changes during the seasonal cycle of growth and decay in eelgrass (Zostera marina) on the Atlantic coast of Canada. J. Fish. Res. Bd Can. 32, 615–621 (1975)

    Google Scholar 

  • Hobson, P. N., R. Summers, J. R. Postgate and D. A. Ware: Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 77, 225–226 (1973)

    PubMed  Google Scholar 

  • Hood, M. A. and S. P. Meyers: Microbial aspects of penaeid shrimp digestion. In: Proc. 26th Ann. Meeting Gulf and Caribbean Fish., New Orleans, pp 81–92. 1974

  • Jones, G. A. and A. Taylor: Gas metabolism in ovine rumen cultures on a nitrogen-deficient medium. Can. J. Microbiol. 21, 1803–1806 (1975)

    PubMed  Google Scholar 

  • Jones, K. and J. G. Thomas: Nitrogen fixation by the rumen contents of sheep. J. Gen. Microbiol. 85, 97–101 (1974)

    PubMed  Google Scholar 

  • Lasker, R. and A. C. Giese: Nutrition of the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. 106, 328–340 (1954)

    Google Scholar 

  • Lawrence, J. M.: On the relationships between marine plants and sea urchins. Oceanogr. mar. Biol. Ann. Rev. 13, 213–286 (1975)

    Google Scholar 

  • Lilly, G. R.: The influence of diet on the growth and bioenergetics of the tropical sea urchin, Tripneustes ventricosus. 216 pp. Ph.D. thesis, University of British Columbia 1975

  • LiPun, H. H. and L. D. Satter: Nitrogen fixation in ruminants. J. Anim. Sci. 41, 1161–1163 (1975)

    PubMed  Google Scholar 

  • Liston, J. and R. R. Colwell: Host and habitat relationships of marine commensal bacteria. In: Symposium on marine microbiology, pp 611–624. Ed. by C. H. Oppenheimer. Springfield: Charles C. Thomas 1963

    Google Scholar 

  • Mann, K. H.: Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. I. Zonation and biomass of seaweeds. Mar. Biol. 12, 1–10 (1972)

    Google Scholar 

  • Miller, P. J. and K. H. Mann: Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Mar. Biol. 18, 99–114 (1973)

    Google Scholar 

  • Oomen, H. A. P. C.: Interrelationship of the human intestinal flora and protein utilization. Proc. Nutr. Soc. 29, 197–206 (1970)

    PubMed  Google Scholar 

  • Patriquin, D. G.: The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15, 35–46 (1972)

    Google Scholar 

  • Patriquin, D. G. and C. Keddy: Nitrogenase activity (acetylene reduction) in a Nova Scotia salt marsh: its association with angiosperms and the influence of some edaphic factors. Aquat. Bot. 4, 227–244 (1978)

    Article  Google Scholar 

  • Prim, P. and J. M. Lawrence: Utilization of marine plants and their constituents by bacteria isolated from the gut of Echinoids (Echinodermata). Mar. Biol. 33, 167–173 (1975)

    Google Scholar 

  • Rennie, R. J., D. A. Rennie and M. Fried: Concepts of 15N usage in dinitrogen fixation studies. In: Isotopes in biological dinitrogen fixation, pp 107–113. Vienna: International Atomic Energy Agency 1978

    Google Scholar 

  • Russell-Hunter, W. D.: Aquatic productivity. 306 pp. London: Collier-Macmillan 1970

    Google Scholar 

  • Sochard, M. R., D. F. Wilson, B. Austin and R. R. Colwell: Bacteria associated with the surface and gut of marine copepods. Appl. environ. Microbiol. 37, 750–759 (1979)

    Google Scholar 

  • Solórzano, L.: Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969)

    Google Scholar 

  • Stewart, W. D. P.: Nitrogen turnover in marine and brackish habitats. II. Use of 15N in measuring nitrogen fixation in the field. Ann. Bot. N.S. 31, 385–407 (1967)

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. 310 pp. Ottawa: Fish. Res. Bd Can. Bull. 167, 1972

    Google Scholar 

  • Tokin, I. B. and G. F. Filimonova: Electron microscope study of the digestive system of Strongylocentrotus droebachiensis (Echinodermata: Echinoidea). Mar. Biol. 44, 143–155 (1977)

    Google Scholar 

  • Unkles, S. E.: Bacterial flora of the sea urchin Echinus esculentus. Appl. environ. Microbiol. 34, 347–350 (1977)

    PubMed  Google Scholar 

  • Vadas, R. L.: Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47, 337–371 (1977)

    Google Scholar 

  • Wilkinson, C. R.: Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar. Biol. 49, 169–176 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. O. Fournier, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerinot, M.L., Patriquin, D.G. The association of N2-fixing bacteria with sea urchins. Mar. Biol. 62, 197–207 (1981). https://doi.org/10.1007/BF00388183

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388183

Keywords

Navigation