Skip to main content
Log in

Atmungswege bei vernarbenden und proliferierenden Gewebefragmenten der Kartoffelknolle

Respiratory pathways in suberin-synthesizing and proliferating potato tuber tissue after derepression

  • Published:
Planta Aims and scope Submit manuscript

Summary

The typical wound respiration drift (O2 und CO2) of 1 mm disks, which amounts to 6 times the values measured immediately after derepression, develops only if cicatrization takes place, but never in proliferating or non-proliferating tissues without suberin biosynthesis. The respiration rate of the latter is merely approximately doubled during the first 8 hours and maintains a steady state level continuously for 6 days. The respiratory drift is not affected by methods of tissue preparation and CO2-concentration per se but only depends on the induction or inhibition of suberin synthesis.

Cyanide inhibition experiments evidently indicate an electron transfer mechanism by suberizing cells during the first 48 hours which is linked to cytochrome oxidase activity to a considerable extent, whereas proliferating tissue respiration nearly quantitatively follows a different pathway of cyanide-resistant terminal oxidation.

Malonate inhibition experiments show the total respiration of proliferating tissue to be resistant, which therefore is bound to the activity of a pathway different from the tricarboxylic acid cycle. Predominantly the action of the pentose-phosphate-shunt must be responsible for energy producing processes and metabolism which finally regulate cell proliferation as well as cell division. Malonate sensitive respiration, that is TCA-cycle activity, is developed only in periderm-forming tissue. Its volume is shown to be in congruence with the amount of “induced respiration” evolved after 8 hours and is responsible for the typical maximum curve. In contrast the resistant basal level is in congruence with the total respiration volume of proliferating disks.

The results indicate a direct relationship between increased TCA-cycle activity and suberin synthesis rather than a relationship between TCA-cycle and cellular processes such as protein synthesis, cell division or elongation, as emphasized by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aprees, T., Beevers, H.: Pentose phosphat pathway as a mayor component of induced respiration of carrot and potato slices. Plant Physiol. 35, 839–847 (1960).

    Google Scholar 

  • Betz, A.: Die aerobe Gärung in aktiven Meristemen höherer Pflanzen. In: Handbuch der Pflanzenphysiologie, Bd. XII/2, S. 88–113 (W. Ruhland, ed.). Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Hackett, D. P.: Respiratory inhibitor. In: Handbuch der Pflanzenphysiologie, Bd. XII/2, S. 23–41 (W. Ruhland, ed.). Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Kahl, G., Lange, H., Rosenstock, G.: Substratspiegel, Enzymaktivitäten und genetische Regulation nach Derepression in pflanzlichen Speichergeweben. Z. Naturforsch. 24 b, 911–918 (1969).

    Google Scholar 

  • Kahl, G., Lange, H., Rosenstock, G.: Die Abhängigkeit der Wundatmung vom Alter und Reifezustand des Speicherparenchyms von Solanum tuberosum L. (Im Druck.)

  • Lange, H.: Vergleichende Histogenese, Atmungsstoffwechsel, Intermediatspiegel und Enzymaktivitäten bei vernarbendem und proliferierendem Kartoffelknollenparenchym. Habil.-Schr. Joh. Wolfg. Goethe-Univers. Frankfurt (Main) (1969).

    Google Scholar 

  • Lange, H., Rosenstock, G., Kahl, G.: Induktionsbedingungen der Suberinsynthese und Zellproliferation bei Parenchymfragmenten der Kartoffelknolle. (1970) (im Druck).

  • Laties, G. G.: The development and control of coexisting respiratory systems in slices of Chicory Root. Arch. Biochem. 79, 378–391 (1959).

    Google Scholar 

  • —: The controlling influence of thickness on the development and type of respiratory activity in potato slices. Plant Physiol. 37, 679–690 (1962).

    Google Scholar 

  • Mulder, E. G.: Effect of mineral nutrition of potato plants on respiration of the tubers. Acta bot. neerl. 4, 429–451 (1955).

    Google Scholar 

  • Robbie, W. A.: Use of cyanide in tissue respiration studies. Methods in medical research by V. R. Potter. Chicago: 1948.

  • Romberger, J. A., Norton, G.: Changing respiratory pathways in potato tuber slices. Plant Physiol. 36, 20–29 (1961).

    Google Scholar 

  • Rosenstock, G., Lange, H., Kahl, G.: Wechselbeziehungen zwischen CO2-Gaswechsel, Volumen und Oberfläche bei Gewebefragmenten von Speicherparenchym. Z. Pflanzenphysiol. 60, 173–186 (1969).

    Google Scholar 

  • Scott, J. K.: Respiration in bulky plant tissue. Doctoral thesis, Univ. of Cambridge, England, 1949.

    Google Scholar 

  • Splittstoesser, W. E., Beevers, H.: Acids in storage tissues. Effects of salts and aging. Plant Physiol. 39, 163–169 (1964).

    Google Scholar 

  • Stiles, W.: The composition of the atmosphere (oxygen content of air, water, soil, intercellular spaces, diffusion, carbon dioxide and oxygen tension). In: Handbuch der Pflanzenphysiologie, vol. XII/2, p. 114–148. (W. Ruhland, ed.). Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • —, Leach, W.: Respiration in plants, 3. Aufl. London-New York: Methuen 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus einer Habilitationsschrift der Naturwissenschaftlichen Fakultät der Universität Frankfurt a. M., 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, H. Atmungswege bei vernarbenden und proliferierenden Gewebefragmenten der Kartoffelknolle. Planta 90, 119–132 (1970). https://doi.org/10.1007/BF00388040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388040

Navigation