Skip to main content
Log in

Analysis of dislocations in some naturally deformed plagioclase feldspars

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Dislocations in intermediate plagioclase feldspars, which were deformed under granulite facies conditions, have been analysed. The study reveals extensive ductile deformation by intracrystalline slip and by twinning. Six out of the seven possible Burgers vectors were identified: \(b = \left[ {001} \right],\tfrac{1}{2}\left[ {110} \right],\tfrac{1}{2}\left[ {1\bar 10} \right],\left[ {101} \right],\tfrac{1}{2}\left[ {112} \right]and\tfrac{1}{2}\left[ {1\bar 12} \right]\). Most, perhaps all, dislocations are dissociated by up to 200 Å. The microstructure is dominated by [001] screw dislocations, most of which appear to be dissociated in (010). The dominant slip system appears to be (010) [001]. Large grain-to-grain variations in the density of free dislocations indicate that the plastic strain in individual grains depended upon the Schmid factor for (010) [001]. The microstructure suggests that the rate-controlling step for high-temperature creep of plagioclase is cross-slip of extended [001] screw dislocations. The rheological contrast between feldspar and quartz is partly due to a difference in stacking fault energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov KS, Ryzhova TV (1962) Elastic properties of rock forming minerals, III feldspars. Acad Sci USSR Bull, Geophys Ser 2:129–131

    Google Scholar 

  • Bak J, Korstgård J, Sørensen K (1975) A major shear zone within the Nagssugtoqidian of West Greenland. Tectonophysics 27:191–209

    Article  Google Scholar 

  • Barrett CR, Sherby OD (1965) Influence of stacking-fault energy on high-temperature creep of pure metals. Trans Metall Soc AIME 233:116–119

    Google Scholar 

  • Borg IY, Heard HC (1969) Mechanical twinning and slip in experimentally deformed plagioclases. Contrib Mineral Petrol 23:128–135

    Article  Google Scholar 

  • Borg IY, Heard HC (1970) Experimental deformation of plagioclases. In: Paulitsch P (ed) Experimental and Natural Rock Deformation. Springer, Berlin Heidelberg New York, pp 375–403

    Google Scholar 

  • Borges FS, White SH (1980) Microstructural and chemical studies of sheared anorthosites, Roneval, South Harris. J Struct Geol 2:273–280

    Google Scholar 

  • Carter CB, Kohlstedt DL (1981) Electron irradiation damage in natural quartz grains. Phys Chem Minerals 7:110–116

    Article  Google Scholar 

  • Christie JM, Ardell AJ (1976) Deformation structures in minerals. In: Wenk H-R (ed) Electron Microscopy in Mineralogy. Springer, Berlin Heidelberg New York, pp 374–403

    Google Scholar 

  • Debat P, Soula JC, Kubin L, Vidal JL (1978) Optical studies of natural deformation microstructures in feldspars (gneiss and pegmatites from Occitania, southern France). Lithos 2:133–145

    Google Scholar 

  • Doyle PA, Turner PS (1968) Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Crystallogr A 24:390–397

    Article  Google Scholar 

  • Epelboin Y, Gandais M, Willaime C (1977) Influence of the elastic anisotropy on the contrast of dislocation images in electron microscopy and x-ray topography. Phys Status Solidi (a) 44:651–659

    Google Scholar 

  • Gandais M, Willaime C (1978) Défauts plans dans les feldspaths alcalins. J Phys Coll 39:C2 110–C2 113

    Google Scholar 

  • Gandais M, Hihi A, Willaime C, Epelboin Y (1982) Dislocation contrast by transmission electron microscopy. A method for Burgers vector characterization if the invisibility criterion is not valid. Phil Mag A45:387–400

    Google Scholar 

  • Glassley WE (1983) The role of CO2 in the chemical modification of deep continental crust. Geochim Cosmochim Acta 47:597–616

    Article  Google Scholar 

  • Goode ADT (1978) High temperature, high strain rate deformation in the lower Kalka Intrusion, Central Australia. Contrib Mineral Petrol 66:137–148

    Article  Google Scholar 

  • Head Ak, Humble P, Clarebrough LM, Morton AJ, Forwood CT (1973) Computed Electron Micrographs and Defect Identification, North-Holland, Amsterdam, 400 pp

  • Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron Microscopy of thin Crystals, 2nd Ed. Robert E Krieger, New York, 563 pp

    Google Scholar 

  • Kovacs MP, Gandais M (1980) Transmission electron microscope study of experimentally deformed K-feldspar single crystals. Phys Chem Minerals 6:61–76

    Article  Google Scholar 

  • Kronenberg AK, Shelton GL (1980) Deformation microstructures in experimentally deformed Maryland diabase. J Struct Geol 2:341–353

    Google Scholar 

  • Lorimer GW, Champness PE, Spooner ETC (1972) Dislocation distributions in naturally deformed omphacite and albite. Nature Phys Sci 239:108–109

    Google Scholar 

  • Lorimer GW, Nissen H-U, Champness PE (1974) High voltage electron microscopy of deformed sodic plagioclase from an alpine gneiss. Schweiz Mineral Petrogr Mitt 54:707–715

    Google Scholar 

  • Marshall DB, McLaren AC (1977a) Deformation mechanisms in experimentally deformed plagioclase feldspars. Phys Chem Minerals 1:351–370

    Article  Google Scholar 

  • Marshall DB, McLaren AC (1977b) The direct observation and analysis of dislocations in experimentally deformed plagioclase feldspars. J Mater Sci 12:893–903

    Article  Google Scholar 

  • Marshall DB, McLaren AC (1977c) Elastic twinning in experimentally deformed plagioclase feldspars. Phys Status Solidi (a) 41:231–240

    Google Scholar 

  • Marshall DB, Wilson CJL (1975) Recrystallization and peristerite formation in albite. Contrib Mineral Petrol 57:55–69

    Google Scholar 

  • Marshall DB, Vernon RH, Hobbs BE (1976) Experimental deformation and recrystallization of a peristerite. Contrib Mineral Petrol 57:49–54

    Google Scholar 

  • McLaren AC (1973) The domain structure of a transitional anorthite; a study by direct lattice resolution electron microscopy. Contrib Mineral Petrol 41:47–52

    Article  Google Scholar 

  • McLaren AC, Marshall DB (1974) Transmission electron microscope study of the domain structures associated with the b-, c-, d-, e- and f-reflections in plagioclase feldspars. Contrib Mineral Petrol 44:237–244

    Article  Google Scholar 

  • Mitra G (1978) Ductile deformation zones and mylonites: the mechanical processes involved in the deformation of crystalline basement rocks. Am J Sci 278:1057–1084

    Google Scholar 

  • Phillips MV, Colville AA, Ribbe PH (1971) The crystal structure of two oligoclases: a comparison with low and high albite. Z Kristallogr 133:43–65

    Google Scholar 

  • Poirier J-P, Vergobbi B (1978) Splitting of dislocations in olivine, cross slip controlled creep and mantle rheology. Phys Earth Planet Inter 16:370–378

    Article  Google Scholar 

  • Ronov AB, Yaroshevsky AA (1969) Chemical composition of the earth's crust. In: Hart PJ (ed) The Earth's Crust and Upper Mantle. Am Geophys Union Monogr 17:37–57

    Google Scholar 

  • Sacerdoti M, Labernardiere H, Gandais M (1980) Transmission electron microscope study of geologically deformed potassic feldspars. Bull Minéral 103:148–155

    Google Scholar 

  • Seifert KE (1965) Deformation bands in albite. Am Mineral 50:1469–1472

    Google Scholar 

  • Smith JV (1972) Critical review of synthesis and occurrence of plagioclase feldspars and a possible phase diagram. J Geol 80:505–525

    Google Scholar 

  • Smallman RE (1970) Modern Physical Metallurgy, 3rd Ed. Butterworths, London, 544 pp

    Google Scholar 

  • Sørensen K (1983) Growth and dynamics of the Nordre Strømfjord shear zone. J Geophys Res 88:3419–3437

    Google Scholar 

  • Tullis J, Yund RA (1977) Experimental deformation of dry Westerly granite. J Geophys Res 82:5705–5718

    Google Scholar 

  • Tullis J, Yund RA (1980) Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. J Struct Geol 2:439–451

    Google Scholar 

  • Vidal J-L, Kubin L, Debat P, Soula J-C (1980) Deformation and dynamic recrystallization of K feldspar augen in orthogneiss from Montagne Noire, Occitania, southern France. Lithos 13:247–255

    Article  Google Scholar 

  • Wakefield J (1977) Mylonitization in the Lethakane shear zone, eastern Botswana. J Geol Soc London 133:263–275

    Google Scholar 

  • White S (1975) Tectonic deformation and recrystallization of oligoclase. Contrib Mineral Petrol 50:287–304

    Article  Google Scholar 

  • Willaime C, Gandais M (1977) Electron microscope study of plastic defects in experimentally deformed alkali feldspars. Bull Soc fr Minéral Cristallogr 100:263–271

    Google Scholar 

  • Willaime C, Christie JM, Kovacs MP (1979) Experimental deformation of K-feldspar single crystals. Bull Minéral 102:168–177

    Google Scholar 

  • Zeuch D, Green HW (1979) Experimental deformation of an “anhydrous” synthetic dunite. Bull Minéral 102:185–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, T.S., Kohlstedt, D.L. Analysis of dislocations in some naturally deformed plagioclase feldspars. Phys Chem Minerals 11, 153–160 (1984). https://doi.org/10.1007/BF00387845

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387845

Keywords

Navigation