Skip to main content
Log in

On the volume-flow mechanism of phloem transport

  • Published:
Planta Aims and scope Submit manuscript

Summary

A steady-state model of solution flow in a tubular semipermeable membrane is developed for an arbitrary distribution of solute sources and sinks along the translocation path. It is demonstrated that the volume-flow mechanism of phloem transport depends only on the two assumptions: 1. that the plasmalemma of the sieve tube is a differentially permeable membrane, and 2. that sugars are actively secreted into and absorbed from the lumen of the sieve tube. It is shown that in the absence of a pressure gradient, there is a negligible concentration gradient over most of the translocation path. However, in the presence of a pressure gradient a small concentration gradient develops as a result of the continually changing chemical potential of water along the direction of solution flow. For Poiseuille flow the concentration gradient is approximately proportional to the mean stream velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crafts, A. S., Crisp, C. E.: Phloem transport in plants. San Francisco: Freeman 1971

    Google Scholar 

  • Diamond, J. M., Bossert, W. H.: Standing gradient osmotic flow. J. gen. Physiol. 50, 2061–2083 (1967)

    Google Scholar 

  • Eschrich, W., Evert, R. F., Young, J. H.: Solution flow in tubular semipermeable membranes. Planta (Berl.) 107, 279–300 (1972)

    Google Scholar 

  • Evert, R. F., Eschrich, W., Eichhorn, S. E.: P−protein distribution in mature sieve elements of Cucurbita maxima. Planta (Berl.) 109, 193–210 (1973)

    Google Scholar 

  • Katchalsky, A., Curran, P. F.: Nonequilibrium thermodynamics in biophysics. Cambridge, Mass., USA: Harvard Univ. Press 1965

    Google Scholar 

  • Kleinig, H., Dörr, I., Weber, C., Kollmann, R.: Filamentous proteins from plant sieve tubes. Nature (Lond.) New Biol. 229, 152–153 (1971)

    Google Scholar 

  • Mason, T. G., Maskell, E. J.: Studies in the transport of carbohydrates in the cotton plant. Ann. Bot. 42, 572–636 (1928)

    Google Scholar 

  • Münch, E.: Die Stoffbewegungen in der Pflanze. Jena: Fischer 1930

    Google Scholar 

  • Sabnis, D. D., Hart, J. W.: P−protein in sieve elements. I. Ultrastructure after treatment with vinblastine and colchicine. Planta (Berl.) 109, 127–133 (1973)

    Google Scholar 

  • Spanner, D. C.: Transport in the phloem. Nature (Lond.) 232, 157–160 (1971)

    Google Scholar 

  • Tammes, P. M. L., Die, J. van, Ie, T. S.: Studies on phloem exudation from Yucca flaccida Haw. VIII. Fluid mechanics and exudation. Acta bot. neerl. 20, 245–252 (1971)

    Google Scholar 

  • Thaine, R.: Movement of sugars through plants by cytoplasmic pumping. Nature (Lond.) 222, 873–875 (1969)

    Google Scholar 

  • Weatherley, P. E.: Solution flow in tubular semi-permeable membranes. Planta (Berl.) 110, 183–187 (1973)

    Google Scholar 

  • Williamson, R. E.: An investigation of the contractile protein hypothesis of phloem translocation. Planta (Berl.) 106, 149–159 (1972)

    Google Scholar 

  • Wooding, F. B. P.: P protein and microtubular systems in Nicotiana callus phloem. Planta (Berl.) 85, 284–298 (1969)

    Google Scholar 

  • Worley, J. F.: Evidence in support of “open” sieve tube pores. Protoplasma (Wien) 76, 129–132 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, J.H., Evert, R.F. & Eschrich, W. On the volume-flow mechanism of phloem transport. Planta 113, 355–366 (1973). https://doi.org/10.1007/BF00387318

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387318

Keywords

Navigation