Skip to main content
Log in

A model describing photosynthesis in terms of gas diffusion and enzyme kinetics

  • Published:
Planta Aims and scope Submit manuscript

Summary

A model predicting net photosynthesis of individual plant leaves for a variety of environmental conditions has been developed. It is based on an electrical analogue describing gas diffusion from the free atmosphere to the sites of CO2 fixation and a Michaelis-Menten equation describing CO2 fixation. The model is presented in two versions, a simplified form without respiration and a more complex form including respiration. Both versions include terms for light and temperature dependence of CO2 fixation and light control of stomatal resistance. The second version also includes terms for temperature, light, and oxygen dependence of respiration and O2 dependence of CO2 fixation.

The model is illustrated with curves based on representative values of the various environmental and biological parameters. These curves relate net photosynthesis to light intensity, [CO2], [O2], temperature, and resistances to CO2 uptake. The shape of the [CO2]-net photosynthesis curves depends on the total diffusion resistance to CO2 uptake and the Michaelis constant for CO2 uptake. The curves range from typical Michaelis-Menten to Blackman types.

The model is combined with a model of leaf energy exchange permitting simultaneous estimation of net photosynthesis and transpiration. The combined model is illustrated with curves relating transpiration to photosynthesis under a wide variety of environmental conditions. Environmental regimes yielding maximum efficiency of water use are identified for the given assumptions and biological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. C.: Photon flux, chlorophyll content, and photosynthesis under natural conditions. Ecology 48, 1050–1053 (1967).

    Google Scholar 

  • Bange, G. G. T.: On the quantitative explanation of stomatal resistance. Acta botanica neerl. 2, 255–297 (1953).

    Google Scholar 

  • Björkman, O.: The effect of oxygen concentration on photosynthesis in higher plants. Physiol. Plant. (Cph.) 19, 618–633 (1966).

    Google Scholar 

  • Blackman, F. F., Smith, A. M.: Experimental researches on vegetable assimilation and respiration. IX. On assimilation in submerged water-plants and its relation to the concentration of carbon dioxide and other factors. Proc. roy. Soc. B. 85, 389–412 (1911).

    Google Scholar 

  • Bowes, G., Ogren, W. L.: The effect of light intensity and atmosphere on ribulose diphosphate carboxylase activity. Plant Physiol. 46, Suppl. 7 (1970).

    Google Scholar 

  • Briggs, G. E., Haldane, J. B. S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925).

    Google Scholar 

  • Decker, J. P.: Comparative responses of carbon dioxide outburst and uptake in tobacco. Plant Physiol. 34, 100–102 (1959).

    Google Scholar 

  • Ellyard, P. W., Gibbs, M.: Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts. Plant Physiol. 44, 1115–1121 (1969).

    Google Scholar 

  • Fock, H., Egle, K.: Über die „Lichtatmung” bei grünen Pflanzen. I. Die Wirkung von Sauerstoff und Kohlendioxyd auf den CO2-Gaswechsel während der Lichtund Dunkelphase. Beitr. Biol. Pflanzen 42, 213–239 (1966).

    Google Scholar 

  • Forrester, M. L., Krotkov, G., Nelson, C. D.: Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 41, 422–427 (1966).

    Google Scholar 

  • Frederick, S. E., Newcomb, E. H.: Microbody-like organelles in leaf cells. Science 163, 1353–1355 (1969).

    Google Scholar 

  • Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Meded. Landbouwhogeschool Wageningen 59, No. 11 (1959).

    Google Scholar 

  • Gates, D. M.: Energy, plants and ecology. Ecology 46, 1–13 (1965).

    Google Scholar 

  • —: Transpiration and leaf temperature. Ann. Rev. Plant Physiol. 19, 211–238 (1968).

    Google Scholar 

  • Gates, D. M., Johnson, H. B., Yocum, C. S., Lommen, P. W.: Geophysical factors affecting plant productivity. Proc. Int. Symp. Productivity of Photosynthetic Systems. Pt. II: Theoretical foundations of optimization of the photosynthetic productivity. Moscow, U.S.S.R. Sept. 1969 (in press).

  • —, Tantraporn, W.: The reflectivity of deciduous trees and herbaceous plants in the infrared to 25 μ. Science 115, 613–616 (1952).

    Google Scholar 

  • Geiger, R.: The climate near the ground (transl. from German Scripta Technica, Inc.). Cambridge, Mass.: Harvard Univ. Press 1966.

    Google Scholar 

  • Heath, O. V. S.: The physiological aspects of photosynthesis. Stanford, Calif.: Stanford University Press 1969.

    Google Scholar 

  • Hew, Ch.-S., Krotkov, G., Canvin, D. T.: Determination of the rate of CO2 evolution by green leaves in light. Plant Physiol. 44, 662–670 (1969).

    Google Scholar 

  • Hoch, G., Owens, O. v. H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. 101, 171–180 (1963).

    Google Scholar 

  • Hofstra, G., Hesketh, T. D.: Effects of temperature on the gas exchange of leaves in the light and dark. Planta (Berl.) 85, 228–237 (1969).

    Google Scholar 

  • Holmgren, P., Jarvis, P. G.: Carbon dioxide efflux from leaves in light and darkness. Physiol. Plant. (Cph.) 20, 1045–1051 (1967).

    Google Scholar 

  • Honert, T. H. van den: Carbon dioxide assimilation and limiting factors. Rec. Trav. bot. néerl. 27, 149–284 (1930).

    Google Scholar 

  • Irvine, J. E.: Evidence for photorespiration in tropical grasses. Physiol. Plant. (Cph.) 23, 607–612 (1970).

    Google Scholar 

  • Jackson, W. A., Volk, R. J.: Photorespiration. Ann. Rev. Plant Physiol. 21, 385–432 (1970).

    Article  Google Scholar 

  • Lake, J. V.: Respiration of leaves during photosynthesis. I. Estimates from an electrical analogue. Aust. J. biol. Sci. 20, 487–493 (1967).

    Google Scholar 

  • Meidner, H., Mansfield, T. A.: Physiology of stomata. Maidenhead, England: McGraw-Hill 1968.

    Google Scholar 

  • Parkhurst, D. F., Duncan, P. R., Gates, D. M., Kreith, F.: Wind-tunnel modelling of convection of heat between air and broad leaves of plants. Agr. Meteorol. 5, 33–47 (1968).

    Google Scholar 

  • Raschke, K.: Über die physikalischen Beziehungen zwischen Wärmeübergangszahl, Strahlungsaustausch, Temperatur und Transpiration eines Blattes. Planta (Berl.) 48, 200–238 (1956).

    Google Scholar 

  • —: Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. Planta (Berl.) 91, 336–363 (1970).

    Google Scholar 

  • Rastorfer, J. R., Higinbotham, N.: Rates of photosynthesis and respiration of the moss Bryum sandbergii as influenced by light intensity and temperature. Amer. J. Bot. 55, 1225–1229 (1968).

    Google Scholar 

  • Saitoh, M., Narita, K., Isikawa, S.: Photosynthetic nature of some aquatic plants in relation to temperature. Bot. Mag. Tokyo 83, 10–12 (1970).

    Google Scholar 

  • Samish, Y., Koller, D.: Photorespiration in green plants during photosynthesis estimated by use of isotopic CO2. Plant Physiol. 43, 1129–1132 (1968).

    Google Scholar 

  • Swinbank, W. C.: Long-wave radiation from clear skies. Quart. J. roy. Met. Soc. 89, 339–348 (1963).

    Google Scholar 

  • Tregunna, E. B., Krotkov, G., Nelson, C. D.: Effect of oxygen on the rate of photorespiration in detached tobacco leaves. Physiol. Plant. (Cph.) 19, 723–733 (1966).

    Google Scholar 

  • Turner, J. S., Brittain, E. G.: Oxygen as a factor in photosynthesis. Biol. Rev. 37, 130–170 (1962).

    Google Scholar 

  • Vogel, S.: Convective cooling at low airspeeds and the shapes of broad leaves. J. exp. Bot. 21, 91–101 (1970).

    Google Scholar 

  • Waggoner, P. E.: Predicting the effect upon net photosynthesis of changes in leaf metabolism and physics. Crop Sci. 9, 315–321 (1969).

    Google Scholar 

  • Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).

    Google Scholar 

  • Zelitch, I.: Stomatal control. Ann. Rev. Plant Physiol. 20, 329–350 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lommen, P.W., Schwintzer, C.R., Yocum, C.S. et al. A model describing photosynthesis in terms of gas diffusion and enzyme kinetics. Planta 98, 195–220 (1971). https://doi.org/10.1007/BF00387066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387066

Keywords

Navigation