Skip to main content
Log in

Synthesis and upper stability of paragonite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following \(P_{{\text{H}}_{\text{2}} {\text{O}}} - T - \) intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.

Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.

The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 0298 ) as well as the enthalpy (Δ H 0f,298 ) and Gibbs free energy (Δ G 0f,298 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 0298 67.8±3.9 cal deg−1 gfw−1 63.7±3.9 cal deg−1 gfw−1 ΔH 0f,298 −1417.9±2.7 kcal gfw−1 −1420.2±2.6 kcal gfw−1 ΔG 0f,298 −1327.4±4.0 kcal gfw−1 −1328.5±4.0 kcal gfw−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, F. R., England, J. L.: Apparatus for phase equilibrium measurements at pressures up to 50 kb and temperatures up to 1750° C. J. Geophys. Res. 65, 741–748 (1960).

    Google Scholar 

  • Burnham, Charles W.: Lattice constant refinement. Carnegie Inst. Wash. Yearbook 61, 132–135 (1962).

    Google Scholar 

  • Burnham, C. Wayne, Holloway, J. R., Nicholas, D. F.: Thermodynamic properties of water to 1000° C and 10,000 bars. Geol. Soc. Am. Spec. Papers 132, 96 p. (1969).

  • Chatterjee, N. D.: Phasenpetrologie der alpidisch metamorphosierten Gesteine in den italienischen Westalpen nebst Untersuchungen zur Stabilität des Paragonits. Habil.-Schrift, University of Bochum, 162 p. (1968).

  • Eugster, H. P., Yoder, H. S.: Paragonite. Carnegie Inst. Wash. Yearbook 53, 111–114 (1954).

    Google Scholar 

  • —: Paragonite. Carnegie Inst. Wash. Yearbook 54, 124–126 (1955).

    Google Scholar 

  • Evans, B. W.: Application of a reaction-rate method to the breakdown equilibria of muscovite and muscovite plus quartz. Am. J. Sci. 263, 647–667 (1965).

    Google Scholar 

  • Frey, M.: A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contr. Mineral. and Petrol. 24, 63–65 (1969).

    Google Scholar 

  • Gruner, J. W.: Conditions for the formation of paragonite. Am. Mineralogist 27, 131–134 (1942).

    Google Scholar 

  • Harder, H.: Untersuchungen an Paragoniten und an natriumhaltigen Muskoviten. Heidel-berger Beitr. Mineral. Petrogr. 5, 227–271 (1956).

    Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 298.15 °K (25.0° C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, 256 p. (1968).

    Google Scholar 

  • Ross, M.: X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite and periclase. Z. Krist. 126, 80–97 (1968).

    Google Scholar 

  • Sand, L. B., Roy, R., Osborn, E. F.: Stability relations of some minerals in the Na2O-Al2O3-SiO2-H2O system. Econ. Geol. 52, 169–179 (1957).

    Google Scholar 

  • Schairer, J. F., Bowen, N. L.: The system K2O-Al2O3-SiO2. Am. J. Sci. 253, 681–746 (1955).

    Google Scholar 

  • Schaller, W. T., Stevens, R. E.: The validity of paragonite as a mineral species. Am. Mineralogist 26, 541–545 (1941).

    Google Scholar 

  • Stirland, D. J., Thomas, A. G., Moore, N. C.: Observations on thermal transformations in alumina. Trans. Brit. Ceram. Soc. 57, 69–84 (1958).

    Google Scholar 

  • Turner, F. J.: Metamorphic petrology. 403 p. New York: McGraw-Hill 1968.

    Google Scholar 

  • Tuttle, O. F.: Two pressure vessels for silicate-water studies. Bull. Geol. Soc. Am. 60, 1727–1729 (1949).

    Article  Google Scholar 

  • Velde, B.: Upper stability limit of muscovite. Am. Mineralogist 51, 924–929 (1966).

    Google Scholar 

  • Weisbrod, A.: Détermination rapide des variations réactionelles d'entropie et d'enthalpie à partir des courbes éxperimentales d'equilibre; tracé rapide des courbes théoriques d'equilibre. Bull. Soc. Franc. Minéral. Crist. 91, 444–452 (1968).

    Google Scholar 

  • Zen, E-an: Free energy of formation of pyrophyllite from hydrothermal data: values, discrepancies and implications. Am. Mineralogist 54, 1592–1606 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Adapted from a part of the author's “Habilitationsschrift” accepted by the Ruhr University, Bochum (Chatterjee, 1968).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N.D. Synthesis and upper stability of paragonite. Contr. Mineral. and Petrol. 27, 244–257 (1970). https://doi.org/10.1007/BF00385781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385781

Keywords

Navigation