Skip to main content
Log in

Der Einfluß von Cytokininen auf die Bildung von Photosyntheseenzymen in Roggenkeimlingen

Influence of cytokinins on the formation of photosynthetic enzymes in rye seedlings

  • Published:
Planta Aims and scope Submit manuscript

Summary

  1. 1.

    Factors were investigated which control the formation of photosynthetic enzymes during germination. Enzymes of the reductive pentose phosphate cycle like carboxydismutase (EC 4.1.1.39) and NADP-dependent glyceraldehydephosphate dehydrogenase (EC 1.2.1.9.) are formed in the primary leaves of dark-grown rye seedlings. The rate of their synthesis is determined by the level of cytokinins. This rate can be increased by treatment of normal seedlings with kinetin. After application of kinetin to dark-grown seedlings, the investigated enzymes finally reach the same activity as they do in untreated light-grown plants. The formation of these photosynthetic enzymes can be strongly reduced by excision of the roots early in the development, a treatment which is known to lower the supply of cytokinins. A high rate of enzyme formation can be restored by feeding kinetin to rootless seedlings. Neither adenosine nor gibberellic acid have this effect on enzyme formation.

  2. 2.

    Changes in the content of cytokinins preferentially influence the formation of the investigated photosynthetic enzymes. Some cytoplasmic enzymes are not affected by the decrease of the cytokinin level which is achieved by excision of the roots. At the beginning of germination only cytoplasmic enzymes are promoted by application of kinetin, whereas in later stages, after 96 hours of germination, only the formation of photosynthetic enzymes is increased. The formation of photosynthetic and cytoplasmic enzymes seem to differ in their cytokinin requirements.

  3. 3.

    Cytokinins seem to be necessary for the formation of enzymes of the reductive pentose phosphate cycle. However, the cytokinins do not alter the time of appearance of these enzymes. Also the suppressing action which is exerted on the formation of photosynthetic enzymes by low temperature cannot be prevented by the application of kinetin. The action of cytokinins probably does not induce the derepression of the genes, but the level of cytokinins determines the extent of the manifestation of the genes.

  4. 4.

    The formation of the photosynthetic enzymes is also promoted by phytochrome. Phytochrome and cytokinin act as independent factors in a multiplicative system. The rate of synthesis of these enzymes in the dark, which corresponds to the cytokinin level of the seedlings (rootless, normal or treated with kinetin) can be increased by a constant factor via the phytochrome system by continuous irradiation with far-red light. In the case of carboxydismutase this factor is nearly 2.

  5. 5.

    After excision of the roots carboxydismutase and NADP-dependent glyceraldehydephosphate dehydrogenase reach higher activity in red and blue light than in far-red light, under which no chlorophyll is formed. In this case formation of carboxydismutase in red and blue light seems to proceed in close correlation with chlorophyll synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Arnon, D. I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • Berger, Ch., u. L. Bergmann: Farblicht und Plastidendifferenzierung im Speichergewebe von Solanum tuberosum L. Z. Pflanzenphysiol. 56, 439–445 (1967).

    Google Scholar 

  • —, u. J. Feierabend: Plastidenentwicklung und Bildung von Photosynthese-Enzymen in etiolierten Roggenkeimlingen. Physiol. Vég. 5, 109–122 (1967).

    Google Scholar 

  • Bergmann, L., u. Ch. Berger: Farblicht und Plastidendifferenzierung in Zellkulturen von Nicotiana tabacum var. “Samsun”. Planta (Berl.) 69, 58–69 (1966).

    Google Scholar 

  • Betz, A., K. Brinkmann u. R. Hinrichs: Welchen Informationswert haben in Rohextrakten gemessene Enzymaktivitäten für physiologische Probleme? Planta (Berl.) 80, 77–81 (1968).

    Google Scholar 

  • Biemann, K., S. Tsunakawa, J. Sonnenbichler, H. Feldmann, Feldmann D., H. G. Zachau: Struktur eines ungewöhnlichen Nucleosids aus serin-spezifischer Transfer-Ribonucleinsäure. Angew. Chem. 78, 600–601 (1966).

    Google Scholar 

  • Biggins, J., and R. B. Park: CO2 assimilation by etiolated Hordeum vulgare seedlings during the onset of photosynthesis. Plant Physiol. 41, 115–118 (1966).

    Google Scholar 

  • Björn, L. O., and I. Odhelius: Chlorophyll formation in excised roots of cucumber and pea. Physiol. Plantarum 19, 60–62 (1966).

    Google Scholar 

  • Boardman, N. K.: Ribosome composition and chloroplast development in Phaseolus vulgaris. Exp. Cell Res. 43, 474–482 (1966).

    Google Scholar 

  • Feierabend, J.: Differenzierungsmuster und Regulationsvorgänge im Enzymsystem von Roggenkeimlingen. Diss. Göttingen 1965.

  • —: Enzymbildung in Roggenkeimlingen während der Umstellung von heterotrophem auf autotrophes Wachstum. Planta (Berl.) 71, 326–355 (1966).

    Google Scholar 

  • —, u. A. Pirson: Die Wirkung des Lichts auf die Bildung von Photosynthese-enzymen in Roggenkeimlingen. Z. Pflanzenphysiol. 55, 235–245 (1966).

    Google Scholar 

  • Fox, J. E.: Incorporation of a kinin, N,6-benzyladenine into soluble RNA. Plant Physiol. 41, 75–82 (1966).

    Google Scholar 

  • Graham, D., A. M. Grieve, and R. M. Smillie: Phytochrome as the primary photoregulator of the synthesis of Calvin cycle enzymes in etiolated pea seedlings. Nature (Lond.) 218, 89–90 (1968).

    Google Scholar 

  • Grill, R., and D. Vince: Photocontrol of anthocyanin formation in turnip seedlings. II. The possible role of phytochrome in the response to prolonged irradiation with far-red or blue light. Planta (Berl.) 67, 122–135 (1965).

    Google Scholar 

  • Hall, R. H., L. Csonka, H. David, and B. McLennan: Cytokinins in the soluble RNA of plant tissues. Science 156, 69–71 (1967).

    Google Scholar 

  • Hartmann, K. M.: A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966).

    Google Scholar 

  • —: Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22b, 1172–1175 (1967).

    Google Scholar 

  • Hendricks, S. B., and H. A. Borthwick: The function of phytochrome in regulation of plant growth. Proc. nat. Acad. Sci. (Wash.) 58, 2125–2130 (1967).

    Google Scholar 

  • Henningsen, K.: An action spectrum for vesicle dispersal in bean plastids. In: Currents in photosynthesis. Proc. 2. West.-Europe Conf. Photos., ed. by J. B. Thomas and J. C. Goedheer, p. 393–400. Rotterdam: Donker Publ. 1966.

    Google Scholar 

  • Kende, H.: Preservation of chlorophyll in leaf sections by substances obtained from root exudate. Science 145, 1066–1067 (1964).

    Google Scholar 

  • —: Kinetinlike factors in the root exudate of sunflowers. Proc. nat. Acad. Sci. (Wash.) 53, 1302–1307 (1965).

    Google Scholar 

  • Lagerstedt, H. B., and R. G. Langston: Translocation of radioactive kinetin. Plant Physiol. 42, 611–622 (1967).

    Google Scholar 

  • Lockhart, J. A.: The analysis of interactions of physical and chemical factors on plant growth. Ann. Rev. Plant. Physiol. 16, 37–52 (1965).

    Google Scholar 

  • Loomis, W. D., and J. Battaile: Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5, 423–438 (1966).

    Google Scholar 

  • McMahon, D., and L. Bogorad: Inhibition of the formation of photosynthetic enzymes by inhibitors of photosynthesis. Plant. Physiol. 43, 188–192 (1968).

    Google Scholar 

  • Miller, C. O.: The relationship of the kinetin and red-light promotions of lettuce seed germination. Plant Physiol. 33, 115–117 (1958).

    Google Scholar 

  • Mohr, H., U. Meyer u. K. M. Hartmann: Die Beeinflussung der Farnsporen-Keimung (Osmunda cinnamomea L. und O. claytoniana L.) über das Phytochromsystem und die Photosynthese. Planta (Berl.) 60, 483–496 (1964).

    Google Scholar 

  • —, E. Wagner u. K. M. Hartmann: Zur Deutung der Hochenergiereaktion der Photomorphogenese (=HER) auf der Basis des Phytochromsystems. Naturwissenschaften 52, 209 (1965).

    Google Scholar 

  • Mothes, K.: Der Beitrag der Kinetinforschung zum Verständnis pflanzlicher Korrelationen. Ber. dtsch. bot. Ges. 74, (24)–(41) (1961).

  • Osborne, D. J., and D. R. McCalla: Rapid bioassay for kinetin and kinins using senescing leaf tissue. Plant Physiol. 36, 219–221 (1961).

    Google Scholar 

  • Powell, R. D., and M. M. Griffith: Effects of kinetin, red light, and gamma radiation on growth of disks of bean leaves. Bot. Gaz. 124, 274–278 (1963).

    Google Scholar 

  • Scherf, H., u. M. H. Zenk: Der Einfluß des Lichtes auf die Flavonoidsynthese und die Enzyminduktion bei Fagopyrum esculentum Moench. Z. Pflanzenphysiol. 57, 401–418 (1967).

    Google Scholar 

  • Simonis, W.: Zyklische und nichtzyklische Photophosphorylierung in vivo. Ber. dtsch. bot. Ges. 80, 395–402 (1967).

    Google Scholar 

  • Stent, G. S.: The Operon: on its third anniversary. Science 144, 816–820 (1964).

    Google Scholar 

  • Stetler, D. A., and W. M. Laetsch: Kinetin-induced chloroplast maturation in cultures of tobacco tissue. Science 149, 1387 (1965).

    Google Scholar 

  • Tanner, W., L. Dächsel, and O. Kandler: Effects of DCMU and Antimycin A on photoassimilation of glucose in Chlorella. Plant Physiol. 40, 1151–1156 (1965).

    Google Scholar 

  • Vold, B. S., and P. S. Sypherd: Modification in transfer RNA during the differentiation of wheat seedlings. Proc. nat. Acad. Sci. (Wash.) 59, 453–458 (1968).

    Google Scholar 

  • Weidner, M., M. Jakobs u. H. Mohr: Über den Einfluß des Phytochroms auf den Gehalt an Nucleinsäure und Protein in Senfkeimlingen (Sinapis alba L.). Z. Naturforsch. 20b, 689–693 (1965).

    Google Scholar 

  • Ziegler, H., I. Ziegler u. H. J. Schmidt-Clausen: Der Einfluß der Intensität und Qualität des Lichts auf die Aktivitätssteigerung der NADP+-abhängigen Glycerin-Aldehyd-3-phosphat-Dehydrogenase. Planta (Berl.) 67, 344–356 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feierabend, J. Der Einfluß von Cytokininen auf die Bildung von Photosyntheseenzymen in Roggenkeimlingen. Planta 84, 11–29 (1968). https://doi.org/10.1007/BF00384818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384818

Navigation