Skip to main content
Log in

Genesis of acid/basic rock associations: a case study The Kallithea intrusive complex, Samos, Greece

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Kallithea intrusive complex on Samos forms part of the Miocene granitoid province of the central Aegean. The complex consists of numerous composite dikes consisting of different I-type diorites, monzodiorites, (quartz) monzonites, granodiorites, and granites, as well as rare pegmatites. Within individual dikes the different rock types display various structural relationships to each other, most of which indicate that multiple intrusion was the main process responsible for the association of different rock types. Petrographical, geochemical, and Sr isotope data prove that at least some of the different magma pulses were genetically unrelated. For others, a comagmatic relationship cannot be excluded. The most spectacular feature of the composite dikes are net-veined parts in which spherical (pillow-like) to angular bodies of microdiorite are surrounded by a network of more felsic rocks of varying compositions (monzonites, granodiorites, and monzogranites). — For the microdiorite/monzogranite pairs, a formation by unmixing due to liquid immiscibility is suggested by the following facts: (a) the presence of monzogranite ocelli within the microdiorite bodies, (b) similar compositions of those minerals present in both the basic and felsic parts, (c) the enrichment of HFS elements in the basic parts and the depletion of these elements in the acid parts, (d) similar Sr isotope initial ratios. Such an origin, however, is excluded for the other net-veined parts having felsic veins of either monzonitic or granodioritic compositions. In these pairs, the HFS elements are enriched in the acid parts, common minerals may have different compositions, and Sr isotope initial ratios are different. These net-veined parts can only be explained by the model of multiple injections whereby a felsic melt intruded into a basic magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altherr R (1981) Zur Petrologie der miozänen Granitoide der Zentralägäis (Griechenland). Dr. habil Thesis, Univ Braunschweig

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A late Oligocene/Early Miocene High Temperature Belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geol Jahrb E23:97–164

    Google Scholar 

  • Altherr R, Henjes-Kunst F, Matthews A (1984) Primäre Sr- und O-Isotopenzusammensetzungen von miozänen I-Typ-Granitoiden der Zentralägäis und daraus abgeleitete Rahmenbedingungen für Modelle zur Genese dieser Gesteine. Fortschr Mineral 62 1:8

    Google Scholar 

  • Ayranci B (1977) The major-, minor-, and trace-element analysis of silicate rocks and minerals from a single sample solution. Schweiz Mineral Petrogr Mitt 57:299–312

    Google Scholar 

  • Bender JF, Hanson GN, Bence AE (1982) The Cortlandt complex: evidence for large-scale liquid immiscibility involving granodiorite and diorite magmas. Earth Planet Sci Lett 58:330–344

    Google Scholar 

  • Blake DH (1966) The net-veined complex of the Austurhorn intrusion, southeastern Iceland. J Geol 74:891–907

    Google Scholar 

  • Bowen NL (1928) The Evolution of Igneous Rocks, Princeton Univ Press, Princeton

    Google Scholar 

  • Butz J (1912) Die Eruptivgesteine der Insel Samos. Centralbl Min 1912: 609–615, 641–651, 673–683

    Google Scholar 

  • Eby GN (1979) Mount Johnson, Quebec — An example of silicate-liquid immiscibility? Geology 7:491–494

    Google Scholar 

  • Foster MD (1960) Interpretation of the Composition of Trioctahedral Micas. US Geol Surv Prof Pap 345-B:11–49

    Google Scholar 

  • Fourcade S, Allègre CJ (1981) Trace Elements Behaviour in Granite Genesis: A case study. The Calc-Alkaline Plutonic Association from the Querigut Complex (Pyrénées, France). Contrib Mineral Petrol 76:177–195

    Google Scholar 

  • Halliday AN, Stephens WE, Harmon RS (1980) Rb-Sr and O isotopic relationships in 3 zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magmas. J Geol Soc London 137:329–348

    Google Scholar 

  • Leake BE (1978) Subcommittee on amphiboles: nomenclature of amphiboles. Mineral Mag 42:533–563

    Google Scholar 

  • Mezger K, Okrusch M (1985) Metamorphism of the variegated sequence at Kallithea, Samos, Greece. Tschermaks Mineral Petrogr Mitt (in press)

  • Nockolds SR (1947) The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am J Sci 245:401–420

    Google Scholar 

  • Otto J (1974) Die Einschlüsse im Granit von Oberkirch (Nordschwarzwald). Ber Naturforsch Ges Freiburg i Br 64:83–174

    Google Scholar 

  • Papanikolaou D (1979) Unités tectoniques et phases de déformation dans l'ile de Samos, Mer Egée, Grèce. Bull soc Géol France (7) 21:745–752

    Google Scholar 

  • Peters A (1968) Ein neues Verfahren zur Bestimmung von Eisen-II-oxid in Mineralen und Gesteinen. N Jahrb Miner Monatsh 1968:119–125

    Google Scholar 

  • Philipson A (1959) Die griechischen Landschaften. Das Aegaeische Meer und seine Inseln. Klostermann Frankfurt

  • Philpotts AR (1972) Density, surface tension, and viscosity of the immiscible phase in a basic, alkaline magma. Lithos 5:1–18

    Google Scholar 

  • Philpotts AR (1976) Silicate liquid immiscibility: Its probable extent and petrogenetic significance. Am J Sci 276:1147–1177

    Google Scholar 

  • Philpotts AR, Hodgson CJ (1968) Role of liquid immiscibility in alkaline rock genesis. 23rd Intern Geol Congr Prague Proc 2:175–188

    Google Scholar 

  • Reid JB, Evans OC, Fates DG (1983) Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth Planet Sci Lett 66:243–261

    Article  Google Scholar 

  • Robert U, Cantagrel JM (1977) Le volcanisme basaltique dans le Sud-Est de la Merd' Egée. Données géochronologiques et relations avec la tectonique. In: Kallergis (ed) “Proceedings of the VI Colloquium on the Geology of the Aegean Region, Athens,” pp 961–867, I.G.M.E. Athens

    Google Scholar 

  • Roedder E (1979) Silicate liquid immiscibility in magmas. In: Yoder (ed) “The Evolution of the Igneous Rocks, 50th Anniversary Perspectives”, Princeton Univ Press Princeton

    Google Scholar 

  • Ryerson FJ, Hess PC (1978) Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim Cosmochim Acta 42:921–932

    Google Scholar 

  • Seidel E, Kreuzer H, Harre W (1982) A Late Oligocene/Early Miocene High Pressure Belt in the External Hellenides. Geol Jahrb E23:165–206

    Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. EarthSci Rev 12:1–33

    Google Scholar 

  • Taylor TR, Vogel TA, Wilband JT (1980) The composite dikes at Mount Desert Island, Maine: an example of coexisting acid and basic magmas. J Geol 88:433–444

    Google Scholar 

  • Theodoropoulos D (1979) Geological map of Greece, 1∶50.000, Samos Island. I.G.M.E. Athens

    Google Scholar 

  • Vogel TA, Wilband JT (1978) Coexisting acidic and basic melts: geochemistry of a composite dike. J Geol 86:353–371

    Google Scholar 

  • Walker GPL, Skelhorn RR (1966) Some associations of acid and basic igneous rocks. Earth-Sci Rev 2:93–109

    Google Scholar 

  • Watson EB (1976) Two liquid partition coefficients. Experimental data and geochemical implications. Contrib Mineral Petrol 56:119–134

    Google Scholar 

  • Wiebe RA (1973) Relations between coexisting basaltic and granitic magmas in a composite dike. Am J Sci 273:130–151

    Google Scholar 

  • Wiebe RA (1974) Coexisting intermediate and basic magmas, Ingonish, Cape Breton Island. J Geol 82:74–87

    Google Scholar 

  • Wiebe RA (1979) Fractionation and liquid immiscibility in an anorthositic pluton of the Nain Complex, Labrador. J Petrol 20:239–269

    Google Scholar 

  • Wiebe RA (1980) Commingling of contrasted magmas in the plutonic environment: examples from the Nain anorthositic complex. J Geol 88:197–209

    Google Scholar 

  • Wiebe RA, Wild T (1983) Fractional crystallization and magma mixing in the Tigalak layered intrusion, the Nain anorthosite complex, Labrador. Contrib Mineral Petrol 84:327–344

    Google Scholar 

  • Yoder HSJr (1973) Contemporaneous basaltic and rhyolitic magmas. Am Mineral 58:152–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezger, K., Altherr, R., Okrusch, M. et al. Genesis of acid/basic rock associations: a case study The Kallithea intrusive complex, Samos, Greece. Contr. Mineral. and Petrol. 90, 353–366 (1985). https://doi.org/10.1007/BF00384714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384714

Keywords

Navigation