Skip to main content
Log in

Evidence for gibberellin-like substances in phloem exudate of higher plants

  • Published:
Planta Aims and scope Submit manuscript

Summary

Samples of sieve-tube sap were obtained as honeydew from aphids feeding on three species of higher plants. The honeydew was extracted, chromatographed and tested in several bioassays for the presence of gibberellin-like substances. The bioassay results indicated that gibberellin-like substances were translocated in the phloem of dandelion (Taraxacum officinale), broad bean (Vicia faba) and willow (Salix viminalis). Results obtained with willow showed that the concentration of gibberellin-like substances in the sieve-tube sap is daylength dependent, high levels being present in plants maintained under long days and low levels in short day plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biddulph, O., S. Biddulph, R. Cory and H. Koontz: Circulation patterns for phosphorus, sulphur and calcium in bean plants. Plant Physiol 33, 293–300 (1958).

    Google Scholar 

  • Brian, P. W., and H. G. Hemming: The effects of gibberellic acid on shoot growth of pea seedlings. Physiol. Plant. 8, 669–681 (1955).

    Google Scholar 

  • Carlisle, D. D., D. J. Osborne, P. E. Ellis, and J. E. Moorhouse: Reciprocal effects of insects and plant-growth substances. Nature (Lond.) 200, 1230 (1963).

    Google Scholar 

  • Carr, D. J., D. M. Read, and K. G. M. Skene: The supply of gibberellins from the root to the shoot. Planta (Berl.) 63, 382–392 (1964).

    Google Scholar 

  • Chin, T. Y., and J. A. Lockhart: Translocation of applied gibberellin in bean seedlings. Amer. J. Bot. 52, 828–833 (1965).

    Google Scholar 

  • Eagles, C. F., and P. F. Wareing: The role of growth substances in the regulation of bud dormancy. Physiol. Plant. 17, 697–709 (1964).

    Google Scholar 

  • Frankland, B., and P. F. Wareing: The effects of gibberellic acid on hypocotyl growth of lettuce seedlings. Nature (Lond.) 185, 255–256 (1960).

    Google Scholar 

  • Hill, G. P.: Exudation from aphid stylets during the period from dormancy to bud break in Tilia americana. J. exp. Bot. 13, 144–145 (1962).

    Google Scholar 

  • Hoad, G. V.: (+)-Abscisin II[(+)-dormin] in phloem exudate of willow. Life Sci. 6, 1113–1118 (1967).

    Google Scholar 

  • —, and A. J. Peel: Studies on the movement of solutes between the sieve tubes and surrounding tissue in willow. I. Interference between solutes and rate of translocation measurements. J. exp. Bot. 16, 433–451 (1965).

    Google Scholar 

  • ——: Studies on the movement of solutes between sieve tubes and surrounding tissues in willow. II. Pathways of ion transport from the xylem to the phloem. J. exp. Bot. 16, 742–758 (1965).

    Google Scholar 

  • Jones, R. L., and I. D. J. Phillips: Organs of gibberellin biosynthesis in light-grown sunflower plants. Plant Physiol. 41, 1381–1386 (1966).

    Google Scholar 

  • Kennedy, J. S., and T. E. Mittler: A method of obtaining phloem sap via mouth parts of aphids. Nature (Lond.) 171, 528 (1953).

    Google Scholar 

  • Kluge, M., E. Reinhard, u. H. Ziegler: Gibberellinaktivität von Siebröhrensäften. Naturwissenschaften 6, 145–146 (1964).

    Google Scholar 

  • Kollmann, R., u. I. Dorr: Lokalisierung funktionstüchtiger Siebzellen bei Juniperus communis mit Hilfe von aphiden. Z. Pflanzenphys. 55, 131–141 (1966).

    Google Scholar 

  • Link, G. K. K., V. Eggers, and J. E. Noulton: Avena coleoptile assay of ether extracts of aphids and their hosts. Bot. Gaz. 101, 928–939 (1940).

    Google Scholar 

  • Lockhart, J. A.: Studies on the organ of production of the natural gibberellin factor in higher plants. Plant Physiol. 32, 204–207 (1957).

    Google Scholar 

  • MacMillan, J., and P. J. Suter: Thin layer chromatography of the gibberellins. Nature (Lond.) 197, 790 (1963).

    Google Scholar 

  • Maxwell, F. G., and R. H. Painter: Auxin content of extracts of certain toler nt and susceptible host plants of Toxoptera graminum, Macrosiphum pisi and Therioaphis maculata and relation to host plant resistance. J. econ. Entomol. 55, 46–56 (1962a).

    Google Scholar 

  • ——: Auxins in honeydew of Toxoptera graminum, Therioaphis maculata and Macrosiphum pisi and their relation to degree of tolerance in host plants. Ann. entomol. Soc. Amer. 55, 229–233 (1962b).

    Google Scholar 

  • McComb, A. J.: The stability and movement of gibberellic acid in pea seedlings. Ann. Bot., N. S. 28, 669–687 (1964).

    Google Scholar 

  • Michniewicz, M.: Biologiezna metoda ilosciowego oznaczania kwasa giberelinowego testem pierwszegoliscia owsa. Acta Soc. Bot. Polon. 30, 553–568 (1961).

    Google Scholar 

  • Paleg, L. G.: Physiological effects of gibberellins. Ann. Rev. Plant Physiol. 16, 291–322 (1965).

    Article  Google Scholar 

  • Peel, A. J.: The movement of ions from the xylem solution into the sieve tubes of willow. J. exp. Bot. 14, 438–447 (1963).

    Google Scholar 

  • Phillips, I. D. J.: Root-shoot hormone relations. I. The importance of an aerated root system in the regulation of growth hormone levels in Helianthus annus. Ann. Bot., N. S. 28, 17–35 (1964a).

    Google Scholar 

  • —: Root-shoot hormone relations. II. Changes in endogenous auxin concentration produced by flooding of the root system in Helianthus annus. Ann. Bot., N. S. 28, 36–45 (1964b).

    Google Scholar 

  • —, and R. L. Jones: Gibberellin-like activity in bleeding sap of root systems of Helianthus annus detected by a new dwarf pea epicotyl assay and other mmethods. Plants 63, 269–278 (1964).

    Google Scholar 

  • Swanson, C. A.: Translocation of organic solutes. In: Plant physiology, F. C. Steward (ed.), p. 481–545, New York: Academic Press Inc. 1959.

    Google Scholar 

  • Thomas, T. H., P. F. Wareing, and P. M. Robinson: Action of the sycamore ‘Dormin’ as a gibberellin antagonist. Nature (Lond.) 205, 1269–1272 (1965).

    Google Scholar 

  • Weatherley, P. E., A. J. Peel, and G. P. Hill: The physiology of the sieve tube. J. exp. Bot. 10, 1–16 (1959).

    Google Scholar 

  • Whyte, P., and L. C. Luckwill: A sensitive bioassay for gibberellins based on retardation of leaf senescence in Rumex obtusifolius. Nature (Lond.) 210, 1360 (1966).

    Google Scholar 

  • Woolley, J. T., T. C. Broyer, and G. V. Johnson: Movement of chlorine in plants. Plant Physiol. 33, 1–7 (1958).

    Google Scholar 

  • Ziegler, H.: Untersuchungen über die Leitung und Sekretion der Assimilate. Planta (Berl.) 47, 447–500 (1956).

    Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in trees. II. On the translocation mechanism in the phloem of white ash Fraxinus americana. Plant Physiol. 32, 399–404 (1957).

    Google Scholar 

  • —: Absorption and translocation: Transport in the phloem. Ann. Rev. Plant Physiol. 11, 167–190 (1960).

    Article  Google Scholar 

  • Zweig, G., S. Yamaguchi, and G. W. Mason: Translocation of C14-gibberellin in Red Kidney Bean, normal corn and dwarf corn. Advanc. in Chem. series 28, 122–134 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoad, G.V., Bowen, M.R. Evidence for gibberellin-like substances in phloem exudate of higher plants. Planta 82, 22–32 (1968). https://doi.org/10.1007/BF00384695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384695

Keywords

Navigation