Skip to main content
Log in

Hormones are no causal links in phytochrome-mediated adventitious root formation in mustard seedlings (Sinapis alba L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The question of whether or not hormones are causal links in the realization of phytochrome control during photomorphogenesis was investigated using the phytochrome-dependent formation of adventitious roots in hypocotyl cuttings excised from mustard seedlings as a test system. Histological examination of regenerating “rest” seedlings revealed that phytochrome (operationally, continuous far-red light) mediates the de novo formation of root primordia in the pericycle region of the hypocotyl near the cutting surface withing 12–24 h after excision.

Auxin (IAA), gibberellin (GA3), Cytokinin (kinetin), abscisic acid (ABA), and ethylene had no promotive effect on primordium formation in dark-grown or far-red irradiated rest seedlings. Depending on concentration, the application of these hormones was either ineffective or inhibitory in the rooting response. It is concluded that phytochrome does not operate through changes of hormone (auxin, gibberellin, cytokinin, ABA, ethylene) levels.

While externally applied ethylene had no specific effect on primordium formation, the number of primordia produced in darkness could be increased to the far-red light level by removing the endogenously formed ethylene. Since the stimulatory effect of light could not be related to a lower ethylene level, it is concluded that ethylene interferes with primordium formation by modulating the susceptibility of this process to phytochrome control. This ethylene effect takes place in a concentration range below the range that can be manipulated by external application of the hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

GA3 :

gibberellic acid

IAA:

indole-3-acetic acid

Pr′ Pfr :

red and far-red absorbing forms of phytochrome

References

  • Abeles, F.B. (1973) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Audus, L.J. (1959) Plant growth substances. Leonard Hill, London

    Google Scholar 

  • Bajracharya, D., Tong, W.-F., Plachy, C., Schopfer, P. (1975) On the role of abscisic acid in phytochrome-mediated photomorphogenesis. Biochem. Physiol. Pflanzen. 168, 421–432

    Google Scholar 

  • Batten, D.J., Goodwin, P.B. (1978) Phytohormones and the induction of adventitious roots. In: Phytohormones and related compounds: A comprehensive treatise, vol. II, pp. 137–145. Letham, D.S., Goodwin, P.B., Higgins, T.J.V., eds. Elsevier, Amsterdam

    Google Scholar 

  • Black, M., Vlitos, A.J. (1972) Possible interrelationships of phytochrome and plant hormones. In: Phytochrome, pp. 517–549, Mitrakos, K., Shropshire, W., eds., Academic Press, London

    Google Scholar 

  • Beyer, E.M., Morgan, P.W. (1970) A method for determing the concentration of ethylene in the gas phase of vegetative plant tissues. Plant Physiol. 46, 352–354

    Google Scholar 

  • Boer, J. de, Feierabend, J. (1974) Comparison of the effects of cytokinins on enzyme development in different cell compartments of the shoot organs of rye seedlings. Z. Pflanzenphysiol. 71, 261–270

    Google Scholar 

  • Bühler, B., Drumm, H., Mohr, H. (1978a) Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. I. Anthocyanin synthesis. Planta 142, 109–117

    Google Scholar 

  • Bühler, B., Drumm, H., Mohr, H. (1978b) Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. II. Enzyme levels and chlorophyll synthesis. Planta 142, 119–122

    Google Scholar 

  • Burg, S.P. (1973) Ethylene in plant growth. Proc. Natl. Acad. Sci. USA 70, 591–597

    Google Scholar 

  • Burg, S.P., Burg, E.A. (1965) Ethylene action and the ripening of fruits. Science 148, 1190–1196

    Google Scholar 

  • Burg, S.P., Burg, E.A. (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol. 42, 144–152

    Google Scholar 

  • Byrne, J.M., Collins, K.A., Cashau, P.F., Aung, L.H. (1975) Adventitious root development from the seedling hypocotyl of Lycopersicon esculentum. Am. J. Bot. 62, 731–737

    Google Scholar 

  • Dore, J. (1965) Physiology of regeneration in cormophytes. In: Handbuch der Pflanzenphysiologie, Bd. XV/2, S. 1–91. Ruhland, W., Hrsg. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Drumm, H., Elchinger, I., Möller, J., Peter, K., Mohr, H. (1971) Induction of amylase in mustard seedlings by phytochrome. Planta 99, 265–274

    Google Scholar 

  • El-Beltagy, A.S., Hall, M.A. (1974) Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol. 73, 47–60

    Google Scholar 

  • Evans, A., Smith, H. (1976) Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc. Natl. Acad. Sci. USA 73, 138–142

    Google Scholar 

  • Feierabend, J. (1969) Der Einfluß von Cytokininen auf die Bildung von Photosyntheseenzymen in Roggenkeimlingen. Planta 84, 11–29

    Google Scholar 

  • Fellenberg, G. (1976) Developmental physiology. Fortschr. Bot. 38, 167–186

    Google Scholar 

  • Fisher, R.W., Miller, J.H. (1975) Growth regulation by ethylene in fern gametophytes. IV. Involvement of photosynthesis in overcoming ethylene inhibition of spore germination. Am. J. Bot. 62, 1104–1111

    Google Scholar 

  • Fletcher, R.A., Peterson, R.L., Zalik, S. (1965) Effect of light quality on elongation, adventitious root production and the relation of cell number and cell size to bean seedling elongation. Plant Physiol. 40, 541–548

    Google Scholar 

  • Friederich, K.-E., Mohr, H. (1975) Adenosine 5′-triphosphate content and energy charge during photomorphogenesis of the mustard seedling Sinapis alba L. Photochem. Photobiol. 22, 49–53

    Google Scholar 

  • Goeschl, J.D., Pratt, H.K. (1968) Regulatory roles of ethylene in the etiolated growth habit of Pisum sativum. In: Biochemistry and physiology of plant growth substances, pp. 1229–1242. Wightman, F., Setterfield, G., eds. Runge Press, Ottawa

    Google Scholar 

  • Hackett, C., Stewart, H.E. (1969) A method for determining the position and size of lateral primordia in the axis of roots without sectioning. Ann. Bot. 33, 679–682

    Google Scholar 

  • Heide, O.M. (1972) The role of cytokinin in regeneration processes. In: Hormonal regulation in plant growth and development, pp. 207–219. Kaldewey, H., Vardar, Y., eds. Verlag Chemie, Weinheim

    Google Scholar 

  • Johansen, D.A. (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kamínek, M. (1967) Root formation in pea stem sections and its inhibition by kinetin, ethionine and chloramphenicol. Biol. Plant. 9, 86–91

    Google Scholar 

  • Kapuya, J.H., Hall, M.A. (1977) Diurnal variations in endogenous ethylene levels in plants. New Phytol. 79, 233–237

    Google Scholar 

  • Miller, C., Skoog, T. (1953) Chemical control of bud formation in tobacco stem segments. Am. J. Bot. 40, 768–773

    Google Scholar 

  • Mohr, H. (1966) Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83

    Google Scholar 

  • Mohr, H., Appuh, U. (1963) Die Keimung von Lactuca-Achänen unter dem Einfluß des Phytochromsystem und der Hochenergiereaktion der Photomorphogenese. Planta 60, 274–288

    Google Scholar 

  • Payer, H.D. (1968) Der Einfluß der Lichtqualität auf die Aufnahme von 14CO2 und die Verteilung des 14C im Stoffwechsel (Untersuchungen an Farngametophyten von Dryopteris filix-mas (L.) Schott.). Dissertation, Universität Freiburg

  • Pfaff, W., Schopfer, P. (1974) Phytochrom-induzierte Regeneration von Adventivwurzeln beim Senfkeimling (Sinapis alba L.) Planta 117, 269–278

    Google Scholar 

  • Reddy, Y.N., Majumder, P.K., Pandey, R.M., Singh, R.N. (1975) Phytochrome-mediated root regeneration in mung (Phaseolus aureus Roxb.) and mango (Mangifera indica L.) cuttings. Curr. Sci. 44, 509–510

    Google Scholar 

  • Skoog, F., Tsui, C. (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am. J. Bot. 35, 782–787

    Google Scholar 

  • Smith, H. (1975) Phytochrome and photomorphogenesis. McGraw-Hill, London

    Google Scholar 

  • Thien, W., Schopfer, P. (1975) Control by phytochrome of cytoplasmic and plastid rRNA accumulation in cotyledons of mustard seedlings in the absence of photosynthesis. Plant Physiol. 56, 660–664

    Article  Google Scholar 

  • Torrey, J.G. (1962) Auxin and purine interactions in lateral root initiation in isolated pea root segments. Physiol. Plant. 15, 177–185

    Google Scholar 

  • Wareing, P.F., Thompson, A.G. (1976) Rapid effects of red light on hormone levels. In: Light and plant development, pp. 285–294. Smith, H., ed. Butterworths, London

    Google Scholar 

  • Went, F.W., Thimann, K.V. (1937) Phytohormones. MacMillan, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfaff, W., Schopfer, P. Hormones are no causal links in phytochrome-mediated adventitious root formation in mustard seedlings (Sinapis alba L.). Planta 150, 321–329 (1980). https://doi.org/10.1007/BF00384662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384662

Key words

Navigation