Skip to main content
Log in

Stability of thermal convection between non-uniformly heated plates

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The effect of horizontal as well as vertical temperature gradients on the stability of natural convection in a thin horizontal layer of viscous, incompressible fluid is studied on the basis of linear theory. The boundaries are taken to be rigid, perfectly thermally conducting, having prescribed temperatures and the horizontal temperature gradient is assumed to be small. It is found that for Prandtl number greater than 0.13, the critical Rayleigh number is always larger than that for the corresponding Benard problem. The preferred mode of disturbance is stationary and will be a transverse roll (having axes normal to the basic flow) or a longitudinal roll (having axes aligned in the direction of the basic flow) depending on whether the Prandtl number is less or larger than 1.7. Finally, it is shown that the instability is of thermal origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

depth of the layer

k, m :

wave numbers in the x and y direction

i, j, k :

unit vectors

v :

velocity vector

u, v, w :

velocity components

t :

time

T o :

standard temperature

T :

temperature

U(z):

basic velocity field defined by (2.9)

T(z):

basic temperature field defined by (2.10)

p :

pressure

D :

differential operator d/dz

2 :

Laplacian operator

ΔT :

temperature difference between lower and upper plates

P r :

Prandtl number ν/κ (ν = kinematic viscosity κ = thermal diffusivity)

R :

Rayleigh number \(g\bar \alpha \Delta {\rm T}d^3 /\kappa \nu\) (g acceleration due to gravity \(\bar \alpha \) coefficient of volume expansion)

\(\bar U\) :

defined by (3.11)

A1, A2, A3, q1, q2, q3, D1, D2, D3 :

constants defined by (3.17)

w *0 :

defined by (3.18)

C1, C2, C3 :

constants defined by (3.19)

G1, G2, G3 :

defined by (3.25)

G 4(P r ), G 5(P r ), G 6, F 1(P r ), F 2(P r ):

defined by (3.43)

\(\bar w_1 \) :

defined by (3.31)

K′, K, P, P′ :

defined by (4.2)–(4.5)

S :

defined by (4.8)

α :

overall wave number

β :

horizontal temperature gradient

θ :

temperature

θ *0 , \(\overline {\theta _0^* }\) :

defined by (3.18)

\(\overline \Theta\) :

defined by (3.11)

σ :

amplification factor of disturbance (≡ σ r+iσ i)

ε, Φ, δ, \(\bar \theta _1\) :

defined by (3.23), (3.36), (3.41), (3.33) respectively

+:

average over one wavelength in the x and y directions

References

  1. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford London, 1961, pp. 9–75.

  2. Schlüter, A., D. Lortz and F. H. Busse, J. Fluid Mech. 23 (1965) 129.

    ADS  MathSciNet  Google Scholar 

  3. Palm, E., J. Fluid Mech. 8 (1960) 129.

    Google Scholar 

  4. Palm, E., T. Ellingsen and B. Gjevik, J. Fluid Mech. 30 (1967) 651.

    ADS  Google Scholar 

  5. Busse, F. H., J. Fluid Mech. 30 (1967) 625.

    ADS  MATH  Google Scholar 

  6. Koschmieder, E. L., Beitr. Phys. Atmos. 39 (1966) 1.

    Google Scholar 

  7. Krishnamurthi, R., J. Fluid Mech. 33 (1968) 445.

    ADS  Google Scholar 

  8. Krishnamurthi, R., J. Fluid Mech. 33 (1968) 457.

    ADS  Google Scholar 

  9. Hoard, C. Q., C. R. Robertson and A. Acrivos, Int. J. Heat Mass Transfer 13 (1970) 849.

    Article  Google Scholar 

  10. Liang, S. F. and A. Acrivos, Int. J. Heat Mass Transfer 13 (1970) 449.

    Article  Google Scholar 

  11. Weber, J. E., Int. J. Heat Mass Transfer 16 (1973) 961.

    Article  MATH  Google Scholar 

  12. Koschmieder, E. L., Beitr. Phys. Atmos. 39 (1966) 208.

    Google Scholar 

  13. Müller, U., Beitr. Phys. Atmos. 39 (1966) 217.

    Google Scholar 

  14. Weber, J. E., Int. J. Heat Mass Transfer 17 (1974) 241.

    Article  MATH  Google Scholar 

  15. Asai, T., J. Meteor. Soc. Japan 48 (1970) 18.

    Google Scholar 

  16. Deardorff, J. W., Physics Fluids 8 (1965) 1027.

    Article  Google Scholar 

  17. Gallagher, A. P. and A. McD. Mercer, Proc. R. Soc. Lond. A286 (1965) 117.

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S.P., Nadoor, S. Stability of thermal convection between non-uniformly heated plates. Appl. Sci. Res. 32, 555–570 (1976). https://doi.org/10.1007/BF00384118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384118

Keywords

Navigation