Skip to main content
Log in

Lead isotope relations in oceanic Ridge basalts from the Juan de Fuca-Gorda Ridge area N.E. Pacific Ocean

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lead isotopic analyses of a suite of basaltic rocks from the Juan de Fuca-Gorda Ridge and nearby seamounts confirm an isotopically heterogeneous mantle known since 1966. The process of mixing during partial melting of a heterogeneous mantle necessarily produces linear data arrays that can be interpreted as secondary isochrons. Moreover, the position of the entire lead isotope array, with respect to the geochron, requires that U/Pb and Th/Pb values are progressively increased over the age of the earth. Partial melting theory also dictates analogous behavior for the other incompatible trace elements. This process explains not only the LIL element character of MOR basalts, but also duplicates the spread of radiogenic lead data collected from alkali-rich oceanic basalts. This dynamic, open-system model of lead isotopic and chemical evolution of the mantle is believed to be the direct result of tectonic flow and convective overturn within the mantle and is compatible with geophysical models of a dynamic earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R.L., Hein, S.M.: Computer simulation of Pb and Sr isotope evolution of the earth's crust and upper mantle. Geochim. Cosmochim. Acta 37, 1–18 (1973)

    Google Scholar 

  • Barnes, I.L., Murphy, T.J., Gramlich, J.W., Shields, W.R.: Lead separation by anodic deposition and isotope ratio mass spectrometry of microgram and smaller samples. Anal. Chem. 45, 1881–1884 (1973)

    Google Scholar 

  • Barr, S.M.: Geology of the northern end of Juan de Fuca ridge and adjacent continental slope. Unpublished Ph.D. dissertation, Univ. of British Columbia, 287 p. (1972)

  • Bertrand, W.G.: A geological reconnaissance of the Dellwood Seamount area, northeast Pacific Ocean, and its relationship to plate tectonics. Unpublished M.Sc. thesis, Univ. of British Columbia, 151 p. (1972)

  • Budinger, T.F.: Cobb Seamount. Deep-Sea Res. 14, 191–201 (1967)

    Google Scholar 

  • Catanzaro, E.J.: Absolute isotopic abundance ratios of three common lead reference samples. Earth Planet. Sci. Lett. 3, 343–346 (1967)

    Article  Google Scholar 

  • Catanzaro, E.J., Murphy, T.J., Shields, W.R., Garner, E.L.: Absolute isotopic abundance ratios of common, equal-atom, and radiogenic lead isotopic standards. J. Res. Natl. Bur. Std. 72A, 261–267 (1968)

    Google Scholar 

  • Church, S.E.: Trace element abundances in ocean sediments and altered basalts — Their implications for andesite genesis (abst). Trans. Am. Geophys. Union 53, 546 (1972)

    Google Scholar 

  • Church, S.E.: Limits of sediment involvement in the genesis of orogenic volcanic rocks. Contrib. Mineral. Petrol. 39, 17–32 (1973)

    Google Scholar 

  • Church, S.E., Bansal, B.M., Wiesmann, H.: The distribution of K, Ti, Zr, U and Hf in Apollo 14 and 15 materials. In: The Apollo 15 Lunar Samples, J.W. Chamberlain, C. Watkins, eds., p. 210–213. Houston: Lunar Science Inst. 1973

    Google Scholar 

  • Church, S.E., Tilton, G.R.: Lead and strontium studies in the Cascade Mountains: Bearing on andesite genesis. Geol. Soc. Am. Bull. 84, 431–453 (1973)

    Google Scholar 

  • Compston, W., Oversby, V.M.: Lead isotopic analysis using a double-spike. J. Geophys. Res. 74, 4338–4348 (1969)

    Google Scholar 

  • Dymond, J.R., Watkins, N.D., Nayudu, Y.R.: Age of Cobb seamount. J. Geophys. Res. 73, 3977–3979 (1968)

    Google Scholar 

  • Gast, P.W.: Isotopic geochemistry of volcanic rocks. In: Basalts: The Poldervaart treatise on rocks of basaltic composition 1, H.H. Hess, ed., p. 325–358. New York: John Wiley & Sons—Interscience 1967

    Google Scholar 

  • Gast, P.W.: Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta 32, 1057–1086 (1968)

    Article  Google Scholar 

  • Gast, P.W., Tilton G.R., Hedge, C.E.: Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145, 1181–1185 (1964)

    Google Scholar 

  • Gordon, R.B.: Observation of crystal plasticity under high pressure with application to the earth's mantle. J. Geophys. Res. 76, 1248–1254 (1971)

    Google Scholar 

  • Green, D.H.: Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism. Phil. Trans. Roy. Soc. London, Ser. A 268, 707–725 (1971)

    Google Scholar 

  • Green, D.H., Ringwood, A.E.: The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967)

    Google Scholar 

  • Haines, E.L., Zartman, R.E.: Uranium concentration and distribution in six peridotite inclusions of probable mantle origin. Earth Planet. Sci. Lett. 20, 45–53 (1973)

    Google Scholar 

  • Hart, S.R.: K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth Planet. Sci. Lett. 6, 293–303 (1969)

    Google Scholar 

  • Hedge, C.E., Peterman, Z.E.: The strontium isotopic composition of basalts from the Gorda and Juan de Fuca Rises, northeastern Pacific Ocean. Contrib. Mineral. Petrol. 27, 114–120 (1970)

    Google Scholar 

  • Hubbard, N.J., Gast, P.W., Rhodes, J.M., Bansal, B.M., Weismann, H., Church, S.E.: Nonmare basalts: Part II. In: Proceedings of the Third Lunar Science Conference 2, D. Heymann, ed., p. 1161–1174. Cambridge: M.I.T. Press 1973

    Google Scholar 

  • Isacks, B., Oliver, J., Sykes, L.R.: Seismology and the new global tectonics. J. Geophys. Res. 73, 5855–5900 (1968)

    Google Scholar 

  • Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M.: Precision measurement of the half-lives and specific activities of U235 and U238. Phys. Rev. C4, 1889–1906 (1971)

    Google Scholar 

  • Kay, R.W., Gast, P.W.: The rare earth content and origin of alkali-rich basalts. J. Geol. 81, 653–682 (1973)

    Google Scholar 

  • Kay, R., Hubbard, N.J., Gast, P.W.: Chemical characteristics and origin of oceanic ridge volcanic rocks. J. Geophys. Res. 75, 1585–1614 (1970)

    Google Scholar 

  • Kulm, L.D., Huene, R. von, Duncan, J.R., Ingle, J.C., Kling, S.A., Musich, L.F., Piper, D.J.W., Pratt, R.M., Schrader, H., Weser, O., Wise, S.W., Jr.: Site 177. In: Initial reports of the deep sea drilling project, XVIII, p. 233–285. Washington: U.S. Government Printing Office 1973

    Google Scholar 

  • LeRoux, L.J., Glendenin, L.E.: Half-life of Th232. Proc. Nat'l. Mtg. on Nucl. Energy, Pretoria, South Africa, 78 (1963)

  • MacLeod, N.S., Pratt, R.M.: Petrology of volcanic rocks recovered on Leg 18. In: Initial reports of the deep sea drilling project, XVIII, p. 935–945. Washington: U.S. Government Printing Office 1973

    Google Scholar 

  • Mattinson, J.M.: Preparation of hydrochloric and nitric acids at ultralow lead levels. Anal. Chem. 44, 1715–1716 (1972)

    Google Scholar 

  • McManus, D.A.: Major bathymetric features near the coast of Oregon, Washington and Vancouver Island. Northwest Sci. 38, 65–82 (1964)

    Google Scholar 

  • Melson W.G.: Preliminary results of a geophysical study of portions of the Juan de Fuca ridge and Blanco fracture zone, 1–33. U.S. Dept. of Commerce ESSA Technical Memorandum C & GSTM 6. Springfield, Va.: Natl. Technical Information Service 1969

    Google Scholar 

  • Oxburgh, E.R., Turcotte, D.L.: Mid-ocean ridges and geotherm distribution during mantle convection. J. Geophys. Res. 73, 2643–2662 (1968)

    Google Scholar 

  • Patterson, C.C.: Characteristics of lead isotope evolution on a continental scale in the earth. In: Isotopic and cosmic chemistry, 19, p. 244–268. Amsterdam: North-Holland 1964

    Google Scholar 

  • Patterson, C.C., Tatsumoto, M.: The significance of lead isotopes in detrital feldspar with respect to chemical differentiation within the earth's mantle. Geochim. Cosmochim. Acta 28, 1–22 (1964)

    Google Scholar 

  • Peterman, Z.E., Hedge, C.E.: Related strontium isotopic and chemical variations in oceanic basalts. Geol. Soc. Am. Bull 82, 493–500 (1971)

    Google Scholar 

  • Rennick, W.L.: A model of lead isotope evolution in the earth's crust and upper mantle. Unpublished M.A. thesis, Univ. of California, Santa Barbara, 93 p. (1973)

    Google Scholar 

  • Ringwood, A.E.: Mineralogy of the deep mantle: Current status and future developments. In: The nature of the solid earth, E.C. Robertson, ed., p. 67–92. New York: McGraw-Hill 1972

    Google Scholar 

  • Shaw, D.M.: Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34, 237–243 (1970)

    Google Scholar 

  • Shields, W.R., ed.: Analytical mass spectrometry section: Summary of activities July 1969 to June 1970. U.S. Dept. of Commerce N.B.S. Technical Note 546, 120 p. Washington: U.S. Government Printing Office 1970

    Google Scholar 

  • Sinha, A.K., Tilton, G.R.: Isotopic evolution of common lead. Geochim. Cosmochim. Acta 37, 1823–1849 (1973)

    Google Scholar 

  • Stocker, R.L., Ashby, F.M.: On the rheology of the upper mantle. Rev. Geophys. 11, 391–426 (1973)

    Google Scholar 

  • Sun, S.S.: Lead isotope studies of young volcanic rocks from oceanic, islands, mid-ocean ridges and island arcs. Unpublished Ph.D. dissertation, Columbia University, 139 p. (1973)

  • Tatsumoto, M.: Genetic relations of oceanic basalts as indicated by lead isotopes. Science 153, 1094–1101 (1966a)

    Google Scholar 

  • Tatsumoto, M.: Isotopic composition of lead in volcanic rocks from Hawaii, Iwo Jima, and Japan. J. Geophys. Res. 71, 1721–1733 (1966b)

    Google Scholar 

  • Tatsumoto, M., Hedge, C.E., Engel, A.E.J.: Potassium, rubidium, strontium, thorium, uranium and the ratio of strontium-87 to strontium-86 in oceanic tholeiitic basalts. Science 150, 886–888 (1965)

    Google Scholar 

  • Tatsumoto, M., Knight, R.J., Allegre, C.J.: Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279–1283 (1973)

    Google Scholar 

  • Tilton, G.R.: Isotopic lead ages of chondritic meteorites. Earth Planet. Sci. Lett. 19, 321–329 (1973)

    Google Scholar 

  • Tilton, G.R., Steiger, R.H.: Mineral ages and isotopic composition of primary lead at Manitouwadge, Ontario. J. Geophy. Res. 74, 2118–2132 (1969)

    Google Scholar 

  • Wasserburg, G.J.: Geochronology and isotopic data bearing on development of the continental crust. In: Advances in earth science, p 431–459. Cambridge: MIT Press 1966

    Google Scholar 

  • Whittaker, E.J.W., Muntus, R.: Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 34, 945–956 (1970)

    Google Scholar 

  • Zartman, R.E., Tera, F.: Lead concentration and isotopic compositions in five peridotite inclusions of probable mantle origin. Earth Planet. Sci. Lett. 20, 54–66 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Analytical work done while the author held a National Research Council Associateship at the Johnson Space Center, Houston, Texas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Church, S.E., Tatsumoto, M. Lead isotope relations in oceanic Ridge basalts from the Juan de Fuca-Gorda Ridge area N.E. Pacific Ocean. Contr. Mineral. and Petrol. 53, 253–279 (1975). https://doi.org/10.1007/BF00382443

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382443

Keywords

Navigation