Skip to main content
Log in

Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon u. urbica (L.) and its ecological significance

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Special energetic adaptations are of great evolutionary significance for birds that encounter transient problems in finding food during the breeding season. House martins, as aerial insectivores, encounter such problems during spells of bad weather, when they must survive on body reserves. This species employs the following behavioural and physiological adaptations to save energy: Low basal metabolic rate (only 43% of the values predicted by allometric equations); low thermal conductance 51% (day) and 67% (night) of the predicted values; clustering behaviour; high tolerance of the young to periods of low food supply; and the ability to become torpid, found in adults and young from the age of 11 days on. House martins are the first passerine birds in which torpor has been found. These adaptations might have played a role in the great success of the house martin, one of the 10–15 most abundant bird species in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMR:

Basal metabolic rate, J/g·h

C :

Thermal conductance, J/g·h°C

M :

Energy metabolism, J/g·h

Ta :

Ambient temperature, °C

Tb :

Body temperature, °C

W :

Body mass, g

References

  • Aschoff J (1981) Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp Biochem Physiol 69A:611–619

    Google Scholar 

  • Aschoff J, Pohl H (1970) Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergröße. J Ornithol 111:38–47

    Google Scholar 

  • Bartholomew GA, Trost CH (1970) Temperature regulation in the Speckled Mousebird, Colius striatus. Condor 72:141–146

    Google Scholar 

  • Boersma PD (1986) Body temperature, torpor and growth in chicks of Fork-Tailed Storm-Petrels (Oceanodroma furcata). Physiol Zool 59:10–19

    Google Scholar 

  • Dawson WR, Hudson JW (1970) Birds. In Whittow GC (ed) Comparative Physiology of Thermoregulation. Invertebrates and Non-mammalian Vertebrates, vol 1). Academic Press, New York, pp 223–310

    Google Scholar 

  • Dunn EH (1975) The timing of endothermy in the development of altricial birds. Condor 77:288–293

    Google Scholar 

  • Hails CJ (1979) A comparison of flight energetics in hirundines and other birds. Comp Biochem Physiol 63A:581–585

    Google Scholar 

  • Hainsworth FR, Collins BG, Wolf LL (1977) The function of torpor in hummingbirds. Physiol Zool 50:215–222

    Google Scholar 

  • Hainsworth FR, Wolf LL (1970) Regulation of oxygen consumption and body temperature during torpor in a hummingbird E. jugularis. Science 168:368–369

    Google Scholar 

  • Hoffmann R, Prinzinger R (1984) Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes). J Ornithol 125:225–237

    Google Scholar 

  • Hund K, Prinzinger R (1974) 11 tote Mehlschwalben (Delichon urbica) in einem Naturnest. Orn Mitt 26:151

    Google Scholar 

  • Hund K, Prinzinger R (1985) Delichon urbica — Mehlschwalbe. In: Glutz von Blotzheim UN, Bauer KM (eds) Handbuch der Vögel Mitteleuropas (vol 10/I). Aula-Verlag Wiesbaden pp 465–507

    Google Scholar 

  • Koskimies J (1948) On temperature regulation and metabolism in the Swift, Micropus a. apus L. during fasting. Experientia 4:274–276

    Google Scholar 

  • Krüger K, Prinzinger R, Schuchmann KL (1982) Torpor and metabolism in Hummingbirds. Comp Biochem Physiol 73A:679–689

    Google Scholar 

  • Lasiewski RC, Dawson WR, Bartholomew GA (1970) Temperature regulation in the little Papuan Frogmouth, Podargus ocellatus. Condor 72:332–338

    Google Scholar 

  • Löhrl H (1970) Die Auswirkung einer Witterungskatastrophe auf den Brutbestand der Mehlschwalbe Delichon urbica in verschiedenen Orten in Südwestdeutschland. Vogelwelt 92:58–66

    Google Scholar 

  • O'Connor RJ (1975) Growth and metabolism in nestling passerines. Symp zool Soc Lond 35:277–306

    Google Scholar 

  • O'Connor RJ (1977) Differential growth and body composition in altricial passerines. Symp zool Soc Lond 119:147–166

    Google Scholar 

  • Peiponen V (1965) The diurnal heterothermy of the nightjar. Ann Acad Sci fenn A IV/101:1–15

    Google Scholar 

  • Prinzinger R (1988) Energy metabolism, body-temperature and breathing parameters in nontorpid blue-naped mousebirds Urocolius macrourus. J Comp Physiol B 157:801–806

    Google Scholar 

  • Prinzinger R, Hänssler I (1980) Metabolism-weight relationship in some small non-passerine birds. Experientia 36:1299–1300

    Google Scholar 

  • Prinzinger R, Siedle K (1986) Experimenteller Nachweis von Torpor bei jungen Mehlschwalben, Delichon urbica. J Ornithol 127:95–96

    Google Scholar 

  • Prinzinger R, Göppel R, Lorenz A, Kulzer E (1981) Body temperature and metabolism in the Red-Backed Mousebird (Colius castanotus) during fasting and torpor. Comp Biochem Physiol 69A:689–692

    Google Scholar 

  • Prinzinger R, Lübben I, Jackel S (1986) Vergleichende Untersuchungen zum Energiestoffwechsel bei Kolibris und Nektarvögeln. J Ornithol 127:303–313

    Google Scholar 

  • Reinertsen RE (1985) Energy strategies in the cold. Doctoral thesis, University of Trondheim

  • Rheinwald G (1970) Die Einwirkungen der Witterungskatastrophe Anfang Juni 1969 auf die Mehlschwalben Delichon urbica verschiedener Altersklasson in Riet. Vogelwelt 91:150–153

    Google Scholar 

  • Ricklefs RE (1974) Energetics of reproduction in birds. Publ Nuttall Orn Club 15:152–292

    Google Scholar 

  • Stoepel B (1984) Folgen der Witterungskatastrophe 1983 in Oberschwaben auf Bestand und Alterszusammensetzung bei der Mehlschwalbe (Delichon urbica). Ecol Birds 6:159–167

    Google Scholar 

  • Stoner D (1935) Temperature and growth studies on the Barn Swallow. Auk 52:400–407

    Google Scholar 

  • Stoner D (1945) Temperature and growth studies of the Northern Cliff Swallow. Auk 62:207–216

    Google Scholar 

  • Weathers WW (1977) Temperature regulation in the Dusky Munia, Lonchura fuscans (Cassin), (Estrildidae). Aust J Zool 25:193–199

    Google Scholar 

  • Yarbrough CG (1971) The influence of distribution and ecology on the termoregulation of small birds. Comp Biochem Physiol 39A:235–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A great part of these investigations were done in the laboratory of Prof. Dr. E. Kulzer, Physiologische Ökologie, Auf der Morgenstelle 28, D-7400 Tübingen, FRG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinzinger, R., Siedle, K. Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon u. urbica (L.) and its ecological significance. Oecologia 76, 307–312 (1988). https://doi.org/10.1007/BF00379969

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379969

Keywords

Navigation