Skip to main content
Log in

Intramitochondrial ATP and cell functions

I. growing yeast cells depleted of intramitochondrial ATP are losing mitochondrial genes

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Cells of Saccharomyces cerevisiae were depleted of intramitochondrial ATP by growing on a glucose-containing medium in the presence of antimycin A and bogkrekic acid. Antimycin A prevented ATP synthesis inside mitochondria by oxidative phosphorylation and bongkrekic acid inhibited import of glycol ytically-produced ATP from the cytosol into mitochondria. Growth of the cells containing ATP depleted mitochondria was accompanied by the following events

  1. 1.

    Mitochondrial genes were being continually lost from growing cells. The loss was random independently of whether the genes were located in the polar or the non-polar regions of the mitochondrial genome.

  2. 2.

    The growing cells were being continuously converted into cytoplasmic respiration-deficient (petite) mutants. The number of mutants was raising rapidly and could be expressed as a power function of the total number of cells.

  3. 3.

    Most of the ensuing petite mutants retained some of their mitochondrial genetic markers and suppressed the respiration-competent genotype in diploids which had been formed in crosses of the mutants with wild-type strains. This indicates that the mutants contained mitochondrial DNA and could not be produced as a suit of a simple dilution of mitochondrial DNA out of the cells lacking intramitochondrial ATP.

  4. 4.

    When the growing cells lacking intramitochondrial ATP were crossed to strains which had not been energy-depleted transmission of mitochondrial genes from the depleted cells and frequency of recombinants were generally diminishing in accord with the assumption that the shortage in intramitochondrial energy led to decrease in input of mitochondrial alleles into the common mating pool.

  5. 4.

    No respiration-deficient mutants were formed in culture of cells lacking intramitochondrial ATP under non-growing conditions.

The events may be accounted for as a reaction of mitochondria to starvation for an energy source consisting in multiple random excisions of genes from the complete genophore in the form of elements that could spread away, replicate and reinsert into other genophores. The process may be considered as a remnant of an adaptive response of a common gene pool to a situation of emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechmann, H., Krüger, M., Böker, E., Bandlow, W., Schweyen, R.J., Kaudewitz, F.: On the formation of π petites in yeast. II. Effects of mutation tsm-8 on mitochondrial functions and π+-factor stability. Molec. gn. Genet. 155, 41–51 (1977)

    Google Scholar 

  • Bolotin-Fukuhara, M., Fukuhara, H.: Modified recombination and transmission of mitochondrial genetic markers in rho minus mutants of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 63, 4608–4612 (1976)

    Google Scholar 

  • Borst, P.: Mitochondrial nucleic acids. Ann. Rev. Biochem. 41, 333–376 (1972)

    Google Scholar 

  • Clark-Walker, G.D., Miklos, G.L.G.: Mitochondrial genetics, circular DNA and the mechanism of the petite mutation in yeast. Genet. Res. (Camb.) 24, 43–57 (1974)

    Google Scholar 

  • Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.O., Bolotin-Fukuhara, M., Coen, D.: Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: Interrelations between the loss of the π+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics 76, 195–219 (1974)

    Google Scholar 

  • Dujon, B., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., Slonimski, P.P., Weill, L.: Mitochondrial genetics. XI. Mutations at the mitochondrial locus ω affecting the recombination of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 143, 131–165 (1976)

    Google Scholar 

  • Dujon, B., Colson, A.M., Slonimski, P.P.: The mitochondrial genetic map of Saccharomyces cerevisiae: Compilation of mutations, genes, genetic and physical mapsl. In: Mitochondria 1977. Proceeding of the colloquium on genetics and biogenesis of mitochondria (Bandlow, W., Schweyen, R.J., Wolf, K., Kaudewitz, F., eds). Berlin: De Gruyter 1977

    Google Scholar 

  • Dujon, B., Kruszewska, A., Slonimski, P.P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., Weill, L.: Mitochondrial genetics. X. Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 137, 29–72 (1975)

    Google Scholar 

  • Dujon, B., Slonimski, P.P., Weill, L.: Mitochondrial genetics. IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78, 415–437 (1974)

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., Chimenes, A.-M.: Ann. Inst. Pasteur 76, 351–367 (1949)

    Google Scholar 

  • Ephrussi, B., de Margerie-Hottinguer, H., Roman, H.: Suppressiveness: A new factor in the genetic determination of the synthesis of respiratory enzymes in yeast. Proc. nat. Acad. Sci. (Wash.) 41, 1065–1071 (1955)

    Google Scholar 

  • Fukuhara, H., Faye, G., Michel, F., Lazowska, J., Deutsch, J., Bolotin-Fukuhara, M., Slonimski, P.P.: Physical and genetic organization of petite and grande yeast mitochondrial DNA. I. Studies by RNA-DNA hybridization. Molec. gen. Genet. 130, 215–238 (1974)

    Google Scholar 

  • Goldring, E.S., Grossman, L.I., Krupnick, D., Cryer, D.R., Marmur, J.: The petite mutation of yeast: Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970)

    Google Scholar 

  • Henderson, P.J.F., Lardy, H.A.: Bongkrekic acid. An inhibitor of the adenine nucleotide translocation of mitochondria. J. biol. Chem. 245, 1319–1326 (1970)

    Google Scholar 

  • Kováč, L.: Energetic aspects of the mitochondrial biogenesis. FEBS Letters 22, 270–272 (1972)

    Google Scholar 

  • Kováč, L., Bednárová, H., Greksák, M.: Oxidative phosphorylation in yeast. I. Isolation and properties of phosphorylating mitochondria from stationary phase cells. Biochim. biophys. Acta (Amst.) 153, 32–42 (1968)

    Google Scholar 

  • Kováč, L., Kolarov, J., Šubík, J.: Genetic determination of the mitochondrial adenine nucleotide translocation system and its role in the eucaryotic cell. Molec. cell. Biochem. 14, 11–14 (1977)

    Google Scholar 

  • Kováčová, V., Irmlerová, J., Kováč, L.: Oxidative phosphorylation in yeast. IV. Combination of a nuclear mutation affecting oxidative phosphorylation with cytoplasmic mutation to respiratory deficiency. Biochim. biophys. Acta (Amst.) 162, 157–163 (1968)

    Google Scholar 

  • Lazowska, J., Slonimski, P.P.: Site-specific recombination in “petite colony” mutants of Saccharomyces cerevisiae. I. Electron microscopic analysis of the organization of recombinanat DNA resulting from end to end joining of two mitochondrial segments. Molec. gen. Genet. 156, 163–175 (1977)

    Google Scholar 

  • Mahler, H.R.: Biogenetic autonomy of mitochondria. Crit. Rev. Biochem. 1, 381–460 (1973)

    Google Scholar 

  • Mahler, H.R., Bastos, R.N.: Coupling between mitochondrial mutation and energy transduction. Proc. nat. Acad. Sci. (Wash.) 71, 2241–2245 (1974)

    Google Scholar 

  • Mahler, H.R., Perlman, P.S.: Induction of respiratory deficient mutants in Saccharomyces cerevisiae by berenil. I. Berenil, a novel, non-intercalating mutagen. Molec. gen. Genet. 121, 285–294 (1973)

    Google Scholar 

  • Mattick, J.S., Nagley, P.: Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome of Saccharomyces cerevisiae. Molec. gen. Genet. 152, 267–276 (1977)

    Google Scholar 

  • Michaelis, G., Douglass, S., Tsai, M.-J., Criddle, R.S.: Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae. Biochem. Genet. 5, 487–495 (1971)

    Google Scholar 

  • Nagley, P., Linnane, A.W.: Mitochondrial DNA deficient mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970)

    Google Scholar 

  • Nagley, P., Linnane, A.W.: Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. molec. Biol. 66, 181–193 (1972)

    Google Scholar 

  • Nagley, P., Mattick, J.S., Hall, R.M., Linnane, A.W.: Biogenesis of mitochondria. 43. A comparative study of petite induction and inhibition of mitochondrial DNA replication by ethidium bromide and berenil. Molec. gen. Genet. 141, 291–304 (1975)

    Google Scholar 

  • Nevers, P., Saedler, H.: Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature (Lond.) 268, 109–115 (1977)

    Google Scholar 

  • Ogur, M., St. John, R., Nagai, S.: Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 98–99 (1957)

    Google Scholar 

  • Perlman, P.S., Mahler, H.R.: Molecular consequences of ethidium bromide mutagenesis. Nature (Lond.) New Biol. 231, 12–16 (1971)

    Google Scholar 

  • Reanney, D.: Extrachromosomal elements as possible agents of adaptation and development. Bact. Rev. 40, 552–590 (1976)

    Google Scholar 

  • Rieske, J.S.: Antimycin A. In: Antibiotics (Gottlieb, D., Shaw, P.D., eds.), Vol. 1, pp. 542–584. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Sager, R.: Cytoplasmic genes and organelles. New York: Academic Press 1972

    Google Scholar 

  • Schatz, G., Mason, T.L.: The biosynthesis of mitochondrial proteins. Ann. Rev. Biochem. 43, 51–88 (1974)

    Google Scholar 

  • Schweyen, R.J., Steyrer, U., Kaudewitz, F., Dujon, B., Slonimski, P.P.: Mapping of mitochondrial genes in Saccharomyces cerevisiae. Population and pedigree analysis of retention or loss of four genetic markers in rho cells. Molec. gen. Genet. 146, 117–132 (1976)

    Google Scholar 

  • Slonimski, P.P., Lazowska, J.: Transposable segments of mitochondrial DNA: A unitary hypothesis for the mechanism of mutation, recombination, sequence reiteration and suppressiveness of yeast “petite colony” mutants. In: Mitochondria 1977. Proceeding of the coloquium on genetics and biogenesis of mitochondria (Bandlow, W., Schweyen, R.J., Wolf, K., Kaudewitz, F., eds.), pp. 39–52. Berlin: De Gruyter 1977

    Google Scholar 

  • Šubík, J., Kolarov, J., Kováč, L.: Obligatory requirement of intramitochondrial ATP for normal functionning of the eucaryotic cell. Biochem. biophys. Res. Commun. 49, 192–198 (1972)

    Google Scholar 

  • Šubík, J., Kolarov, J., Kováč, L.: Bongkrekic acid sensitivity of respiration-deficient mutants and of petite-negative species of yeasts. Biochim. biophys. Acta (Amst.) 357, 453–456 (1974)

    Google Scholar 

  • Šubík, J., Kováčová, V., Takácsová, G.: Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants of Saccharomyces cerevisiae. Europ. J. Biochem. 73, 275–286 (1977)

    Google Scholar 

  • Šubík, J., Takácsová, G.: Genetic determination of ubiquinol-cytochrome c reductase. Mitochondrial locus muc3 specifying resistance of Saccharomyces cerevisiae to mucidin. Molec. gen. Genet. 161, 99–108 (1978)

    Google Scholar 

  • Williamson, D.H., Maroudas, N.G., Wilkie, D.: Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Molec. gen. Genet. 111, 209–223 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šubík, J., Takácsová, G. & Kováč, L. Intramitochondrial ATP and cell functions. Molec. Gen. Genet. 166, 103–116 (1978). https://doi.org/10.1007/BF00379735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379735

Keywords

Navigation