Skip to main content
Log in

Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

48 plant species of the families Asteraceae, Chenopodiaceae, Ericaceae, Fabaceae, Lamiaceae, Polygonaceae and Urticaceae were investigated in 14 natural habitats of Central Europe having different nitrate supplies, with respect to their nitrate content, nitrate reductase activity (NRA) and organic nitrogen content. Plants that were flowering were selected where possible for analysis. The plants were subdivided into flowers, laminae, petioles+shoot axes and below-ground organs. Each organ was analyzed separately. Differences among species were found for the three variables investigated. Apart from the Fabaceae, which had particularly high concentrations of organic N, these differences reflect mainly the ecological behaviour, i.e. high nitrate and organic N contents and NRA values per g dry weight were found in species on sites rich in nitrate, and vice versa. Nitrate content, NRA and organic N content were correlated with “nitrogen figures” of Central European vascular plants defined by Ellenberg (1979). By use of regression equations this correlation was tested with species from other systematic groups. Some species were attributed with calculated “N figures” for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Gharbi A, Hipkin CR (1984) Studies on nitrate reductase in British angiosperms. I. A comparison of nitrate reductase activity in ruderal, woodland-edge and woody species. New Phytol 97:629–639

    Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–519

    Google Scholar 

  • Bauer J (1938) Beiträge zur Physiologie der Ruderalpflanzen. Planta 28:383–428

    Google Scholar 

  • Bremner JM, Keeney DR (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495

    Google Scholar 

  • Ellenberg H (1964) Stickstoff als Standortsfaktor. Ber Dtsch Bot Ges 77:82–92

    Google Scholar 

  • Ellenberg H (1977) Stickstoff als Standortsfaktor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecol Plant 12:1–22

    Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobotanica, Bd 9. Goltze, Göttingen

    Google Scholar 

  • Gebauer G (1987) Vergleichende Untersuchungen zum Nitrathaushalt von Pflanzen unterschiedlicher ökologischer und systematischer Gruppen. Thesis, Technische Universität München

  • Gebauer G, Melzer A, Rehder H (1984) Nitrate content and nitrate reductase activity in Rumex obtusifolius L. I. Differences in organs and diurnal changes. Oecologia (Berlin) 63:136–142

    Google Scholar 

  • Gebauer G, Schuhmacher MI, Krstić B, Rehder H, Ziegler H (1987) Biomass production and nitrate metabolism of Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) in cultures at different levels of nitrogen supply. Oecologia (Berlin) 72:303–314

    Google Scholar 

  • Greenwood DJ, Hunt J (1986) Effect of nitrogen fertiliser on the nitrate contents of field vegetables grown in Britain. J Sci Food Agric 37:373–383

    Google Scholar 

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase from higher plants. In: San Pietro A (ed) Methods in Enzymology, vol 23. Academic Press, London New York, pp 491–503

    Google Scholar 

  • Hageman RH, Reed AJ, Femmer RA, Sherrard JH, Dalling MJ (1980) Some new aspects of the in vivo assay for nitrate reductase in wheat (Triticum aestivum L.) leaves. I. Reevaluation of nitrate pool size. Plant Physiol 65:27–32

    Google Scholar 

  • Havill DC, Lee JA, Stewart GR (1974) Nitrate utilization by species from acidic and calcareous soils. New Phytol 73:1221–1231

    Google Scholar 

  • Havill DC, Lee JA, De-Felice J (1977) Some factors limiting nitrate utilization in acidic and calcareous grasslands. New Phytol 78:649–659

    Google Scholar 

  • Hegnauer R (1962–1973) Chemotaxonomie der Pflanzen, Bd 1–6. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Janiesch P (1981) Ökophysiologische Untersuchungen an Carex-Arten aus Erlenbruchwäldern. Habilitationsschrift, Universität Münster

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Commun 43:1274–1279

    Google Scholar 

  • Laske P (1982) Nitratgehalt von Gemüsekulturen unter Hochglas. Veränderung desselben während der Kulturzeit. Bodenkultur 33:18–25

    Google Scholar 

  • Lee JA, Stewart RG (1978) Ecological aspects of nitrogen assimilation. Adv Bot Res 6:2–43

    Google Scholar 

  • Lee JA, Harmer R, Ignaciuk R (1983) Nitrogen as a limiting factor in plant communities. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Sci Publ, Oxford London Edinburgh Boston Melbourne, pp 95–112

    Google Scholar 

  • Lee JA, Woodin SJ, Press MC (1986) Nitrogen assimilation in an ecological context. In: Lambers H, Neeteson JJ, Stulen I (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Nijhoff Publ, Dordrecht Boston Lancaster, pp 331–346

    Google Scholar 

  • Melzer A, Gebauer G, Rehder H (1984) Nitrate content and nitrate reductase activity in Rumex obtusifolius L. II. Responses to nitrate starvation and nitrogen fertilization. Oecologia (Berlin) 63:380–385

    Google Scholar 

  • Oberdorfer E (1979) Pflanzensoziologische Exkursionsflora. Ulmer, Stuttgart

    Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Ann Rev Plant Physiol 31:313–340

    Google Scholar 

  • Pate JS (1983) Patterns of nitrogen metabolism in higher plants and their ecological significance. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Sci Publ, Oxford London Edinburgh Boston Melbourne, pp 225–255

    Google Scholar 

  • Przemeck E, Kücke M (1986) Accumulation and reduction of nitrate in cereal plants dependent on N supply. In: Lambers H, Neeteson JJ, Stulen I (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Nijhoff Publ, Dordrecht Boston Lancaster, pp 411–416

    Google Scholar 

  • Reed AJ, Canvin DT, Sherrard JH, Hageman RH (1983) Assimilation of (15N)nitrate and (15N)nitrite in leaves of five plant species under light and dark conditions. Plant Physiol 71:291–294

    Google Scholar 

  • Rehder H (1982) Nitrogen relations of ruderal communities (Rumicion alpini) in the northern calcareous alps. Oecologia (Berlin) 55:120–129

    Google Scholar 

  • Rosnitschek-Schimmel I (1985) Seasonal dynamics of nitrogenous compounds in a nitrophilic weed. I. Changes in inorganic and organic nitrogen fractions of the different plant parts of Urtica dioica. Plant Cell Physiol 26:169–176

    Google Scholar 

  • Runge M (1983) Physiology and ecology of nitrogen nutrition. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, NS vol 12C. Springer, Berlin Heidelberg New York, pp 163–200

    Google Scholar 

  • Schnurbein C von (1967) Über den Anteil von Nitrat und Chlorid an der Zusammensetzung des Zellsaftes von Blütenpflanzen. Flora 158:577–593

    Google Scholar 

  • Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems. Oecologia (Berlin) 56:365–373

    Google Scholar 

  • Stewart GR, Orebamjo TO (1983) Studies of nitrate utilization by the dominant species of regrowth vegetation of tropical West Africa: a Nigerian example. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Sci Publ, Oxford London Edinburgh Boston Melbourne, pp 167–188

    Google Scholar 

  • Stewart GR, Lee JA, Orebamjo TO (1972) Nitrogen metabolism of halophytes. I. Nitrate reductase activity in Suaeda maritima. New Phytol 71:263–267

    Google Scholar 

  • Stöcker G (1980) Ökologische Aspekte der saisonalen Veränderung von Stickstoff-Blattspiegelwerten. Flora 170:316–328

    Google Scholar 

  • Thayer JR, Huffaker RC (1980) Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Anal Biochem 102:110–119

    Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (1964–1980) Flora Europaea, Vol 1–5. Cambridge University Press, Cambridge

    Google Scholar 

  • Venter F (1983) Der Nitratgehalt in Chinakohl (Brassica pekinensis (Lour.) Rupr.). Gartenbauwiss 48:9–12

    Google Scholar 

  • Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia (Berlin) 54:317–325

    Google Scholar 

  • Woldendorp JW (1983) The relation between the nitrogen metabolism of Plantago species and the characteristics of the environment. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell Sci Publ, Oxford London Edinburgh Boston Melbourne, pp 137–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebauer, G., Rehder, H. & Wollenweber, B. Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe. Oecologia 75, 371–385 (1988). https://doi.org/10.1007/BF00376940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376940

Key words

Navigation