Skip to main content
Log in

On the stiffness of materials containing a disordered array of microscopic holes or hard inclusions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.

We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L. V., Complex analysis, 3rd ed., McGraw-Hill, New York (1979).

    Google Scholar 

  2. Akhiezer, N. I. & Glazman, I. M., Theory of linear operators in Hilbert space, vol. 1, Pitman, Boston (1981).

    Google Scholar 

  3. Allaire, G., Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal. 113, 209–259 (1991).

    Google Scholar 

  4. Allaire, G., Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II. Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, Arch. Rational Mech. Anal. 113, 261–298 (1991).

    Google Scholar 

  5. Bensoussan, A., Lions, J. L. & Papanicolaou, G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam (1978).

    Google Scholar 

  6. Beran, M., Use of the variational approach to determine bounds for the effective permittivity in random media, Il Nuovo Cimento 38, 771–782 (1965).

    Google Scholar 

  7. Bergman, D. J., The dielectric constant of a composite material-A problem in classical physics, Physics Reports 43, 378–407 (1978).

    Google Scholar 

  8. Bruno, O. P., The effective conductivity of strongly heterogeneous composites, Proc. R. Soc. Lond. A 433, 353–381 (1991).

    Google Scholar 

  9. Christensen, R. M., Mechanics of composite materials, Wiley, New York (1979).

    Google Scholar 

  10. Cioranescu, D. & Murat, F., Une terme étrange venu d'ailleurs, I, II, in Nonlinear partial differential equations and their applications, Vols II, III, H. Brezis & J. L. Lions, eds., Research Notes in Mathematics 60, 70, Pitman, Boston (1982).

    Google Scholar 

  11. Cioranescu, D. & Paulin, J. S. J., Homogenization in open sets with holes, J. Math. Anal. Appl. 71, 590–607 (1979).

    Google Scholar 

  12. Damlamian, A., Hager, W. W. & Rostamian, R., Homogenization for degenerate equations of elasticity, Asymptotic Analysis 1, 283–302 (1988).

    Google Scholar 

  13. De Giorgi, E. & Spagnolo, S., Sulla convergenza delli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. 8, 291–411 (1978).

    Google Scholar 

  14. Dell'Antonio, G. F., Figari, R. & Orlandi, E., An approach through orthogonal projections to the study of inhomogeneous or random media with linear response, Ann. Inst. Henri Poincare 44, 1–28 (1986).

    Google Scholar 

  15. Flewitt, P. E. J., Microstructural characterization of metals and alloys, Institute of Metals, London (1985).

    Google Scholar 

  16. Fung, Y. C., Foundation of solid mechanics, Prentice Hall Inc., Englewood Cliffs, New Jersey (1965).

    Google Scholar 

  17. Golden, K. & Papanicolaou, G., Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys. 90, 473–491 (1983).

    Google Scholar 

  18. Hashin, Z. & Shtrikman, S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11, 127–140 (1963).

    Google Scholar 

  19. Jackson, J. D., Classical electrodynamics, 2nd ed., John Wiley and Sons, New York (1975).

    Google Scholar 

  20. Kantor, Y. & Bergman, D., Elastostatic resonances — a new approach to the calculation of the effective elastic constants of composites, J. Mech. Phys. Solids 30, 355–376 (1982).

    Google Scholar 

  21. Kantor, Y. & Bergman, D., Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids 32, 41–62 (1984).

    Google Scholar 

  22. Keller, J. B., Rubenfeld, L. & Molyneux, J., Extremum principles for slow viscous flows with applications to suspensions, J. Fluid Mech. 30, 97–125 (1962).

    Google Scholar 

  23. Lions, J. L., Some methods in the mathematical analysis of systems and their control, Gordon and Breach, New York (1981).

    Google Scholar 

  24. Maxwell, J. C., Electricity and magnetism, 1st ed., Clarendon Press, Oxford (1873).

    Google Scholar 

  25. Milton, G. W. & Kohn, R. V., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids 36, 597–629 (1988).

    Google Scholar 

  26. Morse, P. M. & Feshbach, H., Methods of theoretical physics, vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  27. Murat, F. & Tartar, L., Calcul des variations et homogénéisation, in Les méthodes de l'homogénéisation: Théorie et applications en physique, Coll. de la Dir. des Etudes et Recherches de Electricité de France, Eyrolles, Paris, 319–370 (1985).

    Google Scholar 

  28. Nečas, J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967).

    Google Scholar 

  29. Oleinik, O. A., On homogenization problems, in Trends and applications of pure mathematics to mechanics, P. G. Ciarlet & M. Roseau, eds., Springer Lecture Notes in Physics 195, 248–272 (1984).

  30. Oleinik, O. A., Iosifyan, G. A. & Panasenko, G. P., Asymptotic expansion of solutions of the system of elasticity theory in perforated domains, Math USSR Sb. 48, 19–39 (1984).

    Google Scholar 

  31. Rubenfeld, L. A. & Keller, J. B., Bounds on elastic moduli of composite media, SIAM J. Appl. Math. 17, 495–510 (1969).

    Google Scholar 

  32. Rubinstein, J. & Torquato, S., Diffusion controlled reactions: Mathematical formulation, variational principles, and rigorous bounds, J. Chem. Phys. 88, 6372–6380 (1988).

    Google Scholar 

  33. Rudin, W., Functional analysis, McGraw-Hill, New York (1973).

    Google Scholar 

  34. Sangani, A. S. & Acrivos, A., The effective conductivity of a periodic array of spheres, Proc. R. Soc. Lond. A 386, 263–275 (1983).

    Google Scholar 

  35. Sokolnikov, I. S., Mathematical theory of elasticity, McGraw-Hill, New York (1956).

    Google Scholar 

  36. Tartar, L., Cours Peccot, College de France (1977).

  37. Torquato, S. & Rubinstein, J., Improved bounds on the effective conductivity of high-contrast suspensions, J. Appl. Phys. 69, 7118–7125 (1991).

    Google Scholar 

  38. Walpole, L. J., On bounds for the overall elastic moduli of inhomogeneous systems-I, J. Mech. Phys. Solids 14, 151–162 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, O.P., Leo, P.H. On the stiffness of materials containing a disordered array of microscopic holes or hard inclusions. Arch. Rational Mech. Anal. 121, 303–338 (1993). https://doi.org/10.1007/BF00375624

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375624

Keywords

Navigation