Skip to main content
Log in

On the material symmetry group of elastic crystals and the Born Rule

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the extent to which non-linear elasticity theory can be used for describing the behavior of crystalline solids. The results we obtain show that some strict and definite boundaries must be set to the possibility of actually doing so. Specifically, we address here a twofold problem: On one hand, we pose the question of the validity of the socalled “Born Rule”, a fundamental hypothesis due to Cauchy and, in a weaker form, to Born, by means of which continuum theories of crystal mechanics are formulated. On the other hand, we explore the possibility of developing an effective elastic model independently of the Rule, in those cases in which the Rule itself does not work. Our results are based on a close study of the implications of the phenomenon of mechanical twinning with regard to the symmetry properties of the energy function of an elastic crystal. These are summarized by the choice of a “material symmetry group” G: The main experimental features of twinning lead one to consider a class of “twinning subgroups” of G that are particular “reflection groups”, in fact, particular linear representations, possibly unfaithful, of abstract “Coxeter groups”. In the “generic” case, the properties of such groups prevent the Born Rule from holding. Only when some very special non-generic conditions are met by the twinning modes of a crystalline substance is the Rule valid; the development of an elastic model is then possible by following a well-known procedure. The analysis of relevant experimental data confirms that, while basically all crystals exhibit twins, most of them do exhibit generic twinning modes for which the hypothesis of Born is violated. We also show that in such generic cases any tentative thermoelastic approach developed independently of the Rule does not give physically sound results and thus cannot be usefully adopted, because some quite undesirable conclusions regarding the symmetry of the energy can be drawn that definitely make elasticity inadequate for our purposes. Experimental data point out nonetheless two quite remarkable classes of “nongeneric” materials for which the Born Rule is never violated, and to which an elastic model safely applies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, K., Perkins, J. & Wayman, C. M. 1986: Type II twins in self-accomodating martensite plate variants in a Cu-Zn-Al shape-memory alloy, Acta Metall. Mater. 34, 2471–2480.

    Google Scholar 

  • Ball, J. M. & James, R. D. 1987: Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100, 13–52.

    Google Scholar 

  • Ball, J. M. & James, R. D. 1992: Proposed experimental test of a theory of fine microstructure and the two well problem, Phil Trans. Royal Soc. Lond. A, 338, 389–450.

    Google Scholar 

  • Balzer, R. & Sigvaldson, H. 1979a: Equilibrium vacancy concentration measurements on Zinc single crystals, J. Phys. F: Metal. Phys. 9, 171–178.

    Google Scholar 

  • Balzer, R. & Sigvaldson, H. 1979b: Equilibrium vacancy concentration measurements on Tin single crystals, Phys. Stat. Sol. (b) 92, 143–147.

    Google Scholar 

  • Barrett, C. S. & Massalski, T. B. 1966: The structure of metals, McGraw-Hill, New York.

    Google Scholar 

  • Bevis, M. 1968: On the crystallography of deformation twinning in alpha-Uranium, J. Nucl. Mater. 26, 235–237.

    Google Scholar 

  • Bevis, M., Rowlands, P. C. & Acton, A. F. 1968: Deformation and transformation twinning modes in Fe-Ni and Fe-Ni-C martensites, Trans. Met. Soc. AIME 242, 1555–1558.

    Google Scholar 

  • Bhattacharya, K. 1991: Wedge-like microstructure in martensites, Acta Metall. Mater. 39, 2431–2444.

    Google Scholar 

  • Bilby, A. & Crocker, A. G. 1965: The theory of crystallography of deformation twinning, Proc. Roy. Soc. Lond. A 288, 240–255.

    Google Scholar 

  • Bourbaki, N. 1981: Éléments de mathématique, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris.

    Google Scholar 

  • Brown, K. S. 1989: Buildings, Springer, New York.

    Google Scholar 

  • Cahn, R. W. 1953: Plastic deformation of alpha-Uranium; twinning and slip, Acta Metall. Mater. 1, 49–74.

    Google Scholar 

  • Cahn, R. W. 1954: Twinned crystals, Advances in Physics (suppl. of Phil. Mag.) 3, 363–445.

    Google Scholar 

  • Chipot, M. & Kinderlehrer, D. 1988: Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103, 237–277.

    Google Scholar 

  • Cohn, P. M. 1961: Lie groups, Cambridge University Press, Cambridge.

    Google Scholar 

  • Collins, C. & Luskin, M. 1989: The computation of the austenitic-martensitic phase transition, in Partial differential equations and continuum models for phase transitions (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics 344, Springer, New York, 34–50.

    Google Scholar 

  • Collins, C., Kinderlehrer, D. & Luskin, M. 1991: Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28, 321–332.

    Google Scholar 

  • Coxeter, H. S. M. 1934: Discrete linear groups generated by reflections, Ann. of Math. 35, 588–621.

    Google Scholar 

  • Coxeter, H. S. M. & Moser, W. O. J. 1980: Generators and relations for discrete groups, fourth edition, Springer, Berlin.

    Google Scholar 

  • Crocker, A. G. 1965: The crystallography of deformation twinning in alpha-Uranium, J. Nucl. Mater. 16, 306–326.

    Google Scholar 

  • Crocker, A. G. & Bevis, M. 1963: Plastic deformation modes in Fe -Ni -C martensites. Discussion, Trans. Met. Soc. AIME 227, 1471–1472.

    Google Scholar 

  • Crocker, A. G. & Bevis, M. 1970: The crystallography of deformation twinning in Titanium, in The science, technology and application of Titanium (T. Jaffee & R. Promisel, eds.), Pergamon, Oxford, 453–458.

    Google Scholar 

  • Crocker, A. G., Heckscher, F., Bevis, M. & Guyoncourt, D. M. M. 1966: A single surface analysis of deformation twins in crystalline mercury, Phil. Mag. 13, 1191–1205.

    Google Scholar 

  • Daniel, J. S., Lesage, B. & Lacombe, P. 1971: The influence of temperature on slip and twinning in Uranium, Acta Metall. 19, 163–173.

    Google Scholar 

  • Deodhar, V. V. 1982: On the root system of a Coxeter group, Comm. Algebra 10, 611–630.

    Google Scholar 

  • Deodhar, V. V. 1986: Some characterizations of Coxeter groups, L'Enseign. Math. 32, 111–120.

    Google Scholar 

  • Dubertret, A. & Le Lann, A. 1979: A development of Kronberg's model for 1, 0, -1, 2 twins in h.c.p. metals, Phys. Stat. Sol. 51, 497–507.

    Google Scholar 

  • Dubertret, A. & Le Lann, A. 1980: Development of a new model for atom movement in twinning, Phys. Stat. Sol. 60, 145–151.

    Google Scholar 

  • Ericksen, J. L. 1970: Nonlinear elasticity of diatomic crystals, Int. J. Solids Structures 6, 951–957.

    Google Scholar 

  • Ericksen, J. L. 1977: Special topics in elastostatics, in Advances in Applied Mechanics (C. S. Yih, ed.), vol. 17, Academic Press, New York, 189–244.

    Google Scholar 

  • Ericksen, J. L. 1979: On the symmetry of deformable crystals, Arch. Rational Mech. Anal. 72, 1–13.

    Google Scholar 

  • Ericksen, J. L. 1980a: Some phase transitions in crystals, Arch. Rational Mech. Anal. 73, 99–124.

    Google Scholar 

  • Ericksen, J. L. 1980b: Changes of symmetry in elastic crystals, Proceedings of the IUTAM Symposium on Finite Elasticity, (D. E. Carlson & R. T. Shield, eds.), Nijhoff, The Hague, 167–177.

    Google Scholar 

  • Ericksen, J. L. 1982a: Crystal lattices and sublattices, Rend. Sem. Mat. Padova 68, 1–11.

    Google Scholar 

  • Ericksen, J. L. 1982b: Multi-valued strain energy functions for crystals, Int. J. Solids Structures 18, 913–916.

    Google Scholar 

  • Ericksen, J. L. 1984: The Cauchy and Born hypotheses for crystals, in Phase transformations and material instabilities in solids (M. E. Gurtin, ed.), Academic press, New York, 61–78.

    Google Scholar 

  • Ericksen, J. L. 1985: Some surface defects in unstressed thermoelastic solids, Arch. Rational Mech. Anal. 88, 337–345.

    Google Scholar 

  • Ericksen, J. L. 1986: Stable equilibrium configurations for elastic crystals, Arch. Rational Mech. Anal. 94, 1–14.

    Google Scholar 

  • Ericksen, J. L. 1987: Twinning in crystals, in Metastability and incompletely posed problems (S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller, eds.), Springer, New York, 78–93.

    Google Scholar 

  • Ericksen, J. L. 1989: Weak martensitic transformations in Bravais lattices, Arch. Rational Mech. Anal. 107, 23–36.

    Google Scholar 

  • Ericksen, J. L. 1991: On kinematic conditions of compatibility, J. Elasticity 26, 65–74.

    Google Scholar 

  • Ericksen, J. L. 1992a: Bifurcation and martensitic transformations in Bravais lattices, J. Elasticity 28, 55–72.

    Google Scholar 

  • Ericksen, J. L. 1992b: Local bifurcation theory for thermoelastic Bravais lattices, J. Elasticity, to appear.

  • Fonseca, I. 1985: Variational methods for elastic crystals, Arch. Rational. Mech. Anal. 97, 189–220.

    Google Scholar 

  • Fonseca, I. 1989: Interfacial energy and the Maxwell rule, Arch. Rational Mech. Anal. 106, 63–95.

    Google Scholar 

  • Fosdick, R. & Hertog, B. 1990: Variant structures in ferroelectrics and ferroelastics, to appear.

  • Friedel, G. 1926: Léçons de crystallographie, Librairie Scientifique Blanchard, Paris.

    Google Scholar 

  • Grove, L. C. & Benson, C. T. 1985: Finite reflection groups, 2nd edition, Springer, New York.

    Google Scholar 

  • Gurtin, M. E. 1983: Two-phase deformations of elastic solids, Arch. Rational Mech. Anal 84, 1–29.

    Google Scholar 

  • Guyoncourt, D. M. M. & Crocker, A. G., 1968: The deformation twinning mode of crystalline Mercury, Acta Metall. Mater. 16, 523–534.

    Google Scholar 

  • Hall, E. O. 1954: Twinning and diffusionless transformations in metals, Butterworths, London.

    Google Scholar 

  • Hiller, H. 1982: Geometry of Coxeter groups, Pitman, Boston.

    Google Scholar 

  • Humphreys, J. E. 1990: Reflection groups and Coxeter groups, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ichinose, S., Funatsu, Y. & Otsuka, K. 1985: Type II deformation twinning in γ′1 martensite in a Cu-Al-Ni alloy, Acta Metall. Mater. 33, 1613–1624.

    Google Scholar 

  • James, R. D. 1981: Finite deformations by mechanical twinning, Arch. Rational Mech. Anal. 77, 143–176.

    Google Scholar 

  • James, R. D. 1986a: Displacive phase transformations in solids, J. Mech. Phys. Solids, 34, 359–394.

    Google Scholar 

  • James, R. D. 1986b: Phase transformations and non-elliptic free energy, in New perspectives in Thermodynamics (J. Serrin, ed.), Springer, New York, 233–239.

    Google Scholar 

  • James, R. D. 1987: The stability and metastability of quartz in Metastability and incompletely posed problems (S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller, eds.), Springer, New York, 147–175.

    Google Scholar 

  • James, R. D. & Kinderlehrer, D. 1989: Theory of diffusionless phase transitions, in Partial differential equations and continuum models for phase transitions (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics 344, Springer, New York, 51–84.

    Google Scholar 

  • Kelly, A. & Groves, G. W. 1970: Crystallography and crystal defects, Addison-Wesley, Reading.

    Google Scholar 

  • Kinderlehrer, D. 1988: Remarks about the equilibrium configurations of crystals, in Material instabilities in continuum mechanics (J. M. Ball, ed.), Oxford University Press, Oxford.

    Google Scholar 

  • Kinderlehrer, D. 1989a: Twinning in crystals (II), in Metastability and incompletely posed problems (S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller, eds.), Springer, New York, 185–211.

    Google Scholar 

  • Kinderlehrer, D. 1989b: Phase transitions in crystals: towards the analysis of microstructure, in Proc. Int. Colloq. on Free Boundary Problems. Theory and applications, to appear.

  • Klassen-Nekliudova, M. V. 1964: Mechanical twinning of crystals, Consultants Bureau, New York.

    Google Scholar 

  • Lang, S. 1965: Algebra, Addison-Wesley, Reading.

    Google Scholar 

  • Li, F.-B. 1992: The crystallographic group of infinite Coxeter groups, J. Algebra 146, 190–204.

    Google Scholar 

  • Lloyd, L. T. & Chiswik, H. H. 1955: Deformation mechanisms in alpha-Uranium single crystals, Trans. AIME Journ. Met. 203, 1206–1214.

    Google Scholar 

  • Love, A. E. H. 1944: A treatise on the mathematical theory of elasticity, fourth edition, Dover, New York.

    Google Scholar 

  • Martinais, D. 1992: Classification of crystallographic groups associated with Coxeter groups, J. Algebra 146, 96–116.

    Google Scholar 

  • Maxwell, G. 1977: On the crystallography of infinite Coxeter groups, Math. Proc. Comb. Phil. Sac. 82, 13–24.

    Google Scholar 

  • Miller, W. 1972: Symmetry groups and their applications, Academic Press, New York.

    Google Scholar 

  • Otte, H. M. & Crocker, A. G. 1965: Crystallographic formulae for hexagonal lattices, Phys. Stat. Solidi 9, 441–450.

    Google Scholar 

  • Paton, N. E. & Backofen, W. A. 1969: Evidence for 0, 1, −1, 1 deformation twinning in Titanium, Trans. Met. Soc. AIME 245, 1369–1370.

    Google Scholar 

  • Parry, G. P. 1976: On the elasticity of monatomic crystals, Math. Proc. Comb. Phil. Soc., 80, 189–193.

    Google Scholar 

  • Parry, G. P. 1981: On phase transitions involving internal strain, Int. J. Solids Structures, 17, 361–378.

    Google Scholar 

  • Parry, G. P. 1982: On shear induced phase transitions in perfect crystals, Int. J. Solids Structures, 18, 59–68.

    Google Scholar 

  • Pitteri, M. 1984: Reconciliation of global and local symmetries in crystals, J. Elasticity 14, 175–190.

    Google Scholar 

  • Pitteri, M. 1985a: On the kinematics of mechanical twinning in crystals, Arch. Rational Mech. Anal. 88, 25–57.

    Google Scholar 

  • Pitteri, M. 1985b: On (v+1)-lattices, J. Elasticity 15, 3–25.

    Google Scholar 

  • Pitteri, M. 1986: On Type 2 twins, Int. J. Plasticity 2, 99–106.

    Google Scholar 

  • Pitteri, M. 1987: A contribution to the description of natural states for elastic crystalline solids, in Metastability and incompletely posed problems, (S. Antman, J. L. Ericksen, D. Kinderlehrer & I. Müller, eds.) Springer, New York, 295–309.

    Google Scholar 

  • Pitteri, M. 1990: Some problems in non-linear elasticity of crystalline solids, Continuum Mech. Thermodyn. 2, 99–117.

    Google Scholar 

  • Rapperport, E. J. 1959: Room temperature deformation process in Zirconium, Acta Metall. 7, 254–260.

    Google Scholar 

  • Reed-Hill, R. E. 1960: A study of the 1, 0, −1, 1 and 1, 0, −1, 3 twinning modes in Magnesium, Trans. Met Soc. AIME 218, 554–558.

    Google Scholar 

  • Reed-Hill, R. E. & Robertson, R. D. 1963: Additional modes of deformation twinning in Magnesium, Acta Metall. Mater. 5, 717–737.

    Google Scholar 

  • Reed-Hill, R. E., Slippy, W. A. Jr. & Buteau, R. E. 1963: Determination of alpha-Zirconium 1, 1, −2, 1 twinning elements using grain boundary rotations, Trans. Met. Soc. AIME 227, 976–979.

    Google Scholar 

  • Richman, R. H. 1963: Plastic deformation modes in Fe-Ni-C martensites, Trans. Met. Soc. AIME 227, 159–166.

    Google Scholar 

  • Rowlands, P. C., Fearon, E. O. & Bevis, M. 1968: Deformation twinning in Fe -Ni and Fe-Ni-C martensites, Trans. Met. Soc. AIME 242, 1559–1562.

    Google Scholar 

  • Sellers, H. S. 1984: A twinning study, J. Elasticity 14, 191–200.

    Google Scholar 

  • Stakgold, I. 1950: The Cauchy relations in a molecular theory of elasticity, Quart. Appl. Math., 8, 169–186.

    Google Scholar 

  • Suzuki, M. 1982: Group theory I, Springer, Berlin.

    Google Scholar 

  • Truesdell, C. & Noll, W. 1965: The non-linear field theories, Handbuch der Physik III/3, Springer, Berlin.

    Google Scholar 

  • Tsaranov, S. 1991: Private communication.

  • Vinberg, E. B. 1971a: Discrete linear groups generated by reflections, Math. USSR Izvestija 5, 1083–1119.

    Google Scholar 

  • Vinberg, E. B. 1971b: Rings of definitions of dense subgroups of semisimple linear groups, Math. USSR Izvestija 5, 45–55.

    Google Scholar 

  • Yoo, M. H. 1981: Slip, twinning and fracture in hexagonal close-packed metals, Metall. Trans. 12A, 409–418.

    Google Scholar 

  • Zanzotto, G. 1988: Twinning in minerals and metals: remarks on the comparison of a thermoelastic theory with some available experimental results: Note I and Note II, Atti Accad. Lincei Rend. Fis. 82, 725–742, 743–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanzotto, G. On the material symmetry group of elastic crystals and the Born Rule. Arch. Rational Mech. Anal. 121, 1–36 (1992). https://doi.org/10.1007/BF00375438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375438

Keywords

Navigation