Skip to main content
Log in

Experimental deformation of partially-melted granite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

An account is given of the experimental deformation of partially-melted granite with melt fractions up to 25% at 800 °C and 300 MPa confining pressure in constant strainrate tests between 10−3 and 10−6 S−1, creep tests and cycling tests. Microscopic study reveals that under these conditions most of the uniform deformation prior to macroscopic shear failure is accomplished by melt redistribution into films perpendicular to the least compressive stress, and by axial fracturing of grains, the latter occurring even at low macroscopic differential stress. The strenght of the partially-melted rock at 10−5 S−1 is found to decrease gradually from about 250 MPa at 5 vol.% melt to about 60 MPa at 15 % melt, and then to drop rapidly to less than 1 MPa at 24% melt. The critical melt fraction separating granular-framework-controlled flow behaviour from suspension-like behaviour is deduced to be approximately 30 to 35 vol.%. At low melt fractions the deforming rock tends to take up externally available melt by a mechanism of dilatancy pumping. The relevance of these results to natural conditions involving partially-melted rocks is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, N.T.: Ultrabasic magmas and high-degree melting of the mantle. Contrib. Mineral. Petrol. 64, 205–221 (1977)

    Google Scholar 

  • Arzi, A.A.: Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184 (1978a)

    Google Scholar 

  • Arzi, A.A.: Fusion kinetics, water pressure, water diffusion and electrical conductivity in melting rock, interrelated. J. Petrol. 19, 153–169 (1978b)

    Google Scholar 

  • Auten, T.A., Gordon, R.B.: Compressive creep rates of partially melted Al-Ga alloys. Metal. Trans. 6 A, 584–586 (1975)

    Google Scholar 

  • Auten, T.A., Gordon, R.B., Stocker, R.L.: Q and mantle creep. Nature 250, 317–318 (1974)

    Google Scholar 

  • Ave'Lallemant, H.G., Carter, N.L.: Syntectonic recrystallization of olivine and modes of flow in the upper mantle. Geol. Soc. Am. Bull. 81, 2203–2220 (1970)

    Google Scholar 

  • Bamford, D., Crampin, S.: Seismic anisotropy-the state of the art. Geophys. J. Roy. Astron. Soc. 49, 1–8 (1977)

    Google Scholar 

  • Barrière, M.: Flowage differentiation: limitation of the ‘Bagnold Effect’ to the narrow intrusions. Contrib. Mineral. Petrol. 55, 139–145 (1976)

    Google Scholar 

  • Berger, A.R., Pitcher, W.S.: Structures in granitic rocks: a commentary and a critique on granite tectonics. Proc. Geol. Assoc. 81, 441–461 (1970)

    Google Scholar 

  • Biot, M.A.: Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78, 4924–4937 (1973)

    Google Scholar 

  • Birch, F.: Compressibility; elastic constants. In: Handbook of physical constants (S.P. Clark, Jr., ed.). Geol. Soc. Am. Mem. 97, 97–173 (1966)

  • Bottinga, Y., Weill, D.F.: Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci. 269, 169–182 (1970)

    Google Scholar 

  • Bottinga, Y., Weill, D.F.: The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475 (1972)

    Google Scholar 

  • Brace, W.F., Martin, R.J.: A test of the law of effective stress for crystalline rocks of low porosity. Int. J. Rock Mech. Min. Sci. 5, 415–426 (1968)

    Google Scholar 

  • Brand, E.W.: Some observations on the control of density by vibration ASTM Spec. Tech. Publ. 523, 121–132 (1973)

    Google Scholar 

  • Brown, G.C., Fyfe, W.S.: The production of granitic melts during ultrametamorphism. Contrib. Mineral. Petrol. 28, 310–318 (1970)

    Google Scholar 

  • Busch, W., Schneider, G., Mehnert, K.R.: Initial melting at grain boundaries Part II: Melting in rocks of granodioritic, quartzdioritic, and tonalitic composition. N. Jb. Mineral. Monatsh. 8, 345–370 (1974)

    Google Scholar 

  • Burnham, C.W.: Viscosity of a water-rich pegmatite melt at high pressures (abs.) Geol. Soc. Am. Spec. Paper 76, 26 (1964)

    Google Scholar 

  • Burnham, C.W., Holloway, J.R., Davis, N.F.: Thermodynamic properties of water to 1,000 ° C and 10,000 bars. Geol. Soc. Am. Spec. Paper 132, (1969)

  • Castro, G.: Liquefaction of sands. Harvard Soil Mech. Ser. 81, Cambridge, Mass: Harvard University 1969

    Google Scholar 

  • Chong, J.S., Christiansen, E.B., Baer, A.D.: Rheology of concentrated suspensions. J. Appl. Polymer Sci 15, 2007–2021 (1971)

    Google Scholar 

  • Cornforth, D.H.: Prediction of drained strength of sands from relative density measurements. ASTM Spec. Tech. Publ. 523, 281–303 (1973)

    Google Scholar 

  • Daly, R.A., Manger, G.E., Clark, S.P. Jr.: Density of rocks. In: Handbook of physical constants (S.P. Clark, Jr., ed.) Geol. Soc. Am. Mem. 97, 19–26 (1966)

  • Dickin, E.A.: Influence of grain shape and size upon the limiting porosities of sands. ASTM Spec. Tech. Publ. 523, 113–120 (1973)

    Google Scholar 

  • Durham, G.N., Townsend, F.C.: Effect of relative density on the liquefaction susceptibility of a fine sand under controlled-stress loading. ASTM Spec. Tech. Publ. 523, 319–331 (1973)

    Google Scholar 

  • Frank, F.C.: On dilatancy in relation to seismic sources. Rev. Geophys. 3, 485–503 (1965)

    Google Scholar 

  • Gallagher, J.J., Jr., Friedman, M., Handin, J., Sowers, G.M.: Experimental studies relating to microfracture in sandstone. Tectonophysics 21, 203–247 (1974)

    Google Scholar 

  • Hart, E.W.: Constitutive relations for the nonelastic deformation of metals. Trans. ASME, J. Eng. Mater. Tech. 98, 193–202 (1976)

    Google Scholar 

  • Hart, E.W., Li, C.Y., Yamada, H., Wire, G.L.: Phenomenological theory: a guide to constitutive relations and fundamental deformation properties. In: Constitutive equations in plasticity (A.S. Argon, ed.), pp. 149–197. Cambridge, Mass.: MIT Press 1975

    Google Scholar 

  • Hoffmann, C.: Granite intruding into granodiorite: an example from the Damara belt, South West Africa. Geol. Rundschau 66, 465–477 (1977)

    Google Scholar 

  • Holubec, I., D'Appolonia, E.: Effect of particle shape on the engineering properties of granular soils. ASTM Spec. Tech. Publ. 523, 304–318 (1973)

    Google Scholar 

  • Hulme, G.: The interpretation of lava flow morphology. Geophys. J. Roy. Astron. Soc. 39, 361–383 (1974)

    Google Scholar 

  • Jaeger, J.C., Cook, N.G.W.: Fundamentals of rock mechanics, 2nd edn.), pp. 585. London: Chapman and Hall (1976)

    Google Scholar 

  • James, K., Ashbee, K.H.G.: Plasticity of hot glass-ceramics. Progress Mat. Sci. 21, 1–59 (1975)

    Google Scholar 

  • Jeffrey, D.J., Acrivos, A.: The rheological properties of suspensions of rigid particles. Am. Inst. Chem. Eng. J. 22, 417–432 (1976)

    Google Scholar 

  • Johnson, A.M.: Physical processes in geology, pp. 577. San Francisco: Freeman, Cooper, and Company 1970

    Google Scholar 

  • Karabelas, A.J.: Particle attrition in shear flow of concentrated slurries. Am. Inst. Chem. Eng. 22, 765–771 (1976)

    Google Scholar 

  • Komar, P.D.: Mechanical interactions of phenocrysts and flow differentiation of igneous dikes and sills. Geol. Soc. Am. Bull. 83, 973–988 (1972a)

    Google Scholar 

  • Komar, P.D.: Flow differentiation in igneous dikes and sills; profiles of velocity and phenocryst concentration. Geol. Soc. Am. Bull. 83, 3443–3448 (1972b)

    Google Scholar 

  • Komar, P.D.: Phenocryst interactions and the velocity profile of magma flowing through dikes or sills. Geol. Soc. Am. Bull. 87, 1336–1342 (1976)

    Google Scholar 

  • Kushiro, I.: Changes in viscosity and structure of melt of NaAl-Si2O6 composition at high pressures. J. Geophys. Res. 81, 6347–6350 (1976)

    Google Scholar 

  • Kushiro, I., Yoder, H.S. Jr., Mysen, B.O.: Viscosities of basalt and andesite melts at high pressures. J. Geophys. Res. 81, 6351–6356 (1976)

    Google Scholar 

  • Ladanyi, B.: Discussion of W.F. Brace and R.J. Martin's paper ‘A test of the law of effective stress for crystalline rocks of low porosity’. Int. J. Rock Mech. Min. Sci. 7, 123–124 (1970)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Theory of elasticity, pp. 134. London, New York, Paris, Los Angeles: Pergamon Press 1959

    Google Scholar 

  • Martin, R.J.: Time-dependent crack growth in quartz and its application to the creep of rocks. J. Geophys. Res. 77, 1406–1419 (1972)

    Google Scholar 

  • Mavko, G., Nur, A.: Melt squirt in the asthenosphere. J. Geophys. Res. 80, 1444–1448 (1975)

    Google Scholar 

  • Mehnert, K.R.: Migmatites and the origin of granitic rocks, pp. 393. Amsterdam, London, New York: Elsevier Publishing Company 1968

    Google Scholar 

  • Mehnert, K.R., Büsch, W., Schneider, G.: Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. Neues Jahrb. Mineral. Monatsh. 4, 165–183 (1973)

    Google Scholar 

  • Montgomery, C.W., Brace, W.F.: Micropores in plagioclase. Contrib. Mineral. Petrol. 52, 17–28 (1975)

    Google Scholar 

  • Morgenstern, M.: Maximum entropy of granular materials. Nature 200, 559–560 (1963)

    Google Scholar 

  • Murase, T., McBirney, A.R.: Properties of some common igneous rocks and their melts at high temperatures. Geol. Soc. Am. Bull. 84, 3563–3592 (1973)

    Google Scholar 

  • Murrell, S.A.F., Chakravarty, S.: Some new rheological experiments on igneous rocks at temperatures up to 1120 °C. Geophys. J. Roy. Astron. Soc. 34, 211–250 (1973)

    Google Scholar 

  • Murrell, S.A.F., Ismail, I.A.H.: The effect of temperature on the strength at high confining pressure of granodiorite containing free and chemically-bound water. Contrib. Mineral. Petrol. 55, 317–330 (1976)

    Google Scholar 

  • Nur, A., Mavko, G.: Postseismic viscoelastic rebound. Science 183, 204–206 (1974)

    Google Scholar 

  • Paterson, M.S.: A high-pressure, high-temperature apparatus for rock deformation. Int. J. Rock Mech. Min. Sci. 7, 517–526 (1970)

    Google Scholar 

  • Paterson, M.S.: Nonhydrostatic thermodynamics and its geologic applications. Rev. Geophys. Space Phys. 11, 355–389 (1973)

    Google Scholar 

  • Paterson, M.S.: Experience with an internally heated gas-medium deformation apparatus to 500 MPa. Brighton: Second Int. Conf. on High Pressure Engineering, 1975, to be published by The Institution of Mechanical Engineers 1977

  • Raleigh, C.B., Paterson, M.S.: Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70, 3965–3985 (1965)

    Google Scholar 

  • Riecke, E.: Ueber das Gleichgewicht zwischen einem festen, homogen deformirten Körper und einer flüssigen Phase, insbesondere über die Depression des Schmelzpunktes durch einseitige Spannung. Ann. Phys. 54, 731–738 (1895)

    Google Scholar 

  • Robie, R.A., Bethke, P.M., Toulmin, M.S., Edwards, J.L.: X-Ray crystallographic data, densities, and molar volumes of minerals. In: Handbook of physical constants (S.P. Clark, Jr. ed.). Geol. Soc. Am. Mem. 97, 27–73 (1966)

  • Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8, 22–53 (1958)

    Google Scholar 

  • Rutter, E.H.: The effects of strain-rate changes on the strength and ductility of Solenhofen limestone at low temperatures and confining pressures. Int. J. Rock Mech. Min. Sci. 9, 183–189 (1972)

    Google Scholar 

  • Sabatier, G.: Influence de la teneur en eau sur la viscosité d'une rétinite, verre ayant la composition chimique d'un granité. Compt. Rend. 242, 1340–1342 (1956)

    Google Scholar 

  • Scarfe, C.M.: Viscosity of basic magmas at varying pressure. Nature Phys. Sci. 241, 101–102 (1973)

    Google Scholar 

  • Schlue, J.W., Knopoff, L.: Shear wave anisotropy in the upper mantle of the Pacific basin. Geophys. Res. Lett. 3, 359–362 (1976)

    Google Scholar 

  • Scholz, C.H.: Static fatigue of quartz. J. Geophys. Res. 77, 2104–2114 (1972)

    Google Scholar 

  • Selig, E.T., Ladd, R.S. (eds.): Evaluation of relative density and its role in geotechnical projects involving cohesionless soils. ASTM Spec. Tech. Publ. 523, 1–510 (1973)

  • Shaw, H.R.: Obsidian — H2O viscosities at 1,000 and 2,000 bars in the temperature range 700 ° to 900 ° C. J. Geophys. Res. 68, 6337–6343 (1963)

    Google Scholar 

  • Shaw, H.R.: Comments on viscosity, crystal settling, and convection in granitic magmas. Am. J. Sci. 263, 120–152 (1965)

    Google Scholar 

  • Shaw, H.R.: Rheology of basalt in the melting range. J. Petrol. 10. 510–535 (1969)

    Google Scholar 

  • Shaw, H.R.: Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)

    Google Scholar 

  • Shaw, H.R.: Diffusion of H2O in granitic liquids: Part I. Experimental data. Part II. Mass transfer in magma chambers. In: Geochemical transport and kinetics (A.W. Hofmann, B.J. Giletti, H.S. Yoder, Jr., R.A. Yund, eds.), pp. 139–170. Washington: Carnegie Institution 1974

    Google Scholar 

  • Shaw, H.R., Wright, T.L., Peck, D.L., Okamura, R.: The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am. J. Sci. 266, 225–264 (1968)

    Google Scholar 

  • Sparks, R.S.J., Pinkerton, H., MacDonald, R.: The transport of xenoliths in magmas. Earth Planet. Sci. Lett. 35, 234–238 (1977)

    Google Scholar 

  • Sprunt, E.S., Brace, W.F.: Direct observation of microcavities in crystalline rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11, 139–150 (1974)

    Google Scholar 

  • Stocker, R.A., Ashby, M.F.: On the rheology of the upper mantle. Rev. Geophys. Space Phys. 11, 391–426 (1973)

    Google Scholar 

  • Terzaghi, K., Peck, R.B.: Soil mechanics in engineering practice, pp. 729. New York-London-Sydney: John Wiley and Sons 1967

    Google Scholar 

  • Tullis, J., Yund, R.A.: Experimental deformation of dry Westerly granite. J. Geophys. Res. 82, 5705–5718 (1977)

    Google Scholar 

  • Waff, H.S.: Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett. 2, 193–196 (1975)

    Google Scholar 

  • Walsh, J.B.: The effect of cracks on the uniaxial elastic compression of rocks. J. Geophys. Res. 70, 399–411 (1965)

    Google Scholar 

  • Warren, N., Anderson, O.L.: Elastic properties of granular mate rials under uniaxial compaction cycles. J. Geophys. Res. 78, 6911–6925 (1973)

    Google Scholar 

  • Weertman, J.: Creep laws for the mantle of the earth. Phil. Trans. Roy. Soc. Lond. [A] 288, 9–26 (1978)

    Google Scholar 

  • Whitney, J.A.: The effects of pressure, temperature, and \({\text{X}}_{{\text{H}}_{\text{2}} {\text{O}}} \) on phase assemblage in four synthetic rock compositions. J. Geol. 83, 1–31 (1975)

    Google Scholar 

  • Winkler, H.G.F.: Petrogenesis of metamorphic rocks, (3rd edn.), pp. 320. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  • Youd, T.L.: Factors controlling maximum and minimum densities of sands. ASTM Spec. Tech. Publ. 523, 98–112 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Molen, I., Paterson, M.S. Experimental deformation of partially-melted granite. Contr. Mineral. and Petrol. 70, 299–318 (1979). https://doi.org/10.1007/BF00375359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375359

Keywords

Navigation