Skip to main content
Log in

High-pressure, high-temperature stability of surinamite in the system MgO-BeO-Al2O3-SiO2-H2O

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The MgAl surinamite end member, (Mg3Al3)[6]O[AlBeSi3O15], was synthesized in the requisite system with and without water. The new phase is monoclinic, space group P2/n, with a=9.881(1)Å; b=11.311(1) Å; c=9.593(1) Å; β=109.52(2)°. Refractive indices are n x=1.7015(20); n y=1.7035(20); n z=1.7055(20). The infrared spectrum shows characteristic differences against the structurally related and optically extremely similar phase sapphirine.

Using the seeding technique, the preliminary stability field for MgAl surinamite was found to lie at high temperatures (≳650 °C) and high pressures (≳4 kbar). At lower temperatures breakdown takes place to hydrous assemblages of chlorite, talc, and chrysoberyl with kyanite or yoderite; at lower pressures chrysoberyl forms parageneses with sapphirine and cordierite. In crystal chemical terms the underlying principle for the stability of surinamite versus that of the low-pressure assemblages is the higher proportion of octahedrally coordinated Al in surinamite (75%). Following the same principle surinamite itself decomposes at still higher pressures to a paragenesis, in which all Al enters octahedral coordination (pyrope+a chrysoberyl-type phase and some unidentified X-ray peaks).

The stability field of synthetic MgAl surinamite is in good agreement with P, T-estimates of some 8–12 kbar, 800°–950° C as taken from the literature for the few occurrences of natural, Fe-bearing surinamite in granulite and upper amphibolite facies environments. The incorporation of iron in surinamite must be limited, because this mineral is known to coexist with its more iron-rich breakdown assemblage almandine-rich garnet+chrysoberyl. As the minimum melting curve of granite under hydrous conditions lies outside the surinamite field up to a water pressure of about 20 kbar, the absence of surinamite in normal granitic pegmatites can already be explained by physical constraints. However, there are probably also chemical constraints in the generally high Fe/Mg bulk chemistry of the pegmatite environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermand D, Seifert F, Schreyer W (1975) Instability of sapphirine at high pressures. Contrib Mineral Petrol 50:79–92

    Google Scholar 

  • Anastasiou P, Seifert F (1972) Solid solubility of Al2O3 in enstatite at high temperatures and 1–5 kb water pressure. Contrib Mineral Petrol 34:272–287

    Google Scholar 

  • Anderson BW, Payne CJ, Claringbull GF (1951) Taaffeite, a new beryllium mineral, found as a cut gemstone. Mineral Mag 29:765–772

    Google Scholar 

  • Barton MD (1984) Phase relations of minerals in the system BeO-Al2O3-SiO2-H2O: Experimental results and petrological applications. (Abstr.) Program An Meet Geol Soc Am 16:439

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase equilibrium measurements at pressures up to 50 kb and temperatures to 1750° C. J Geophys Res 65:741–748

    Google Scholar 

  • Burt DM (1978) Multisystems analysis of beryllium mineral stabilities: the system BeO-Al2O3-SiO2-H2O. Am Mineral 63:664–676

    Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Google Scholar 

  • Chopin C, Schreyer W (1983) Magnesiocarpholite and magnesiochloritoid: two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO-Al2O3-SiO2-H2O. Am J Sci 283-A:72–96

    Google Scholar 

  • Day HW, Halbach H (1979) The stability field of anthophyllite: the effect of experimental uncertainty on permissible phase diagram topologies. Am Mineral 64:809–823

    Google Scholar 

  • Evans HT Jr, Appleman DE, Handwerker DN (1963) The last square refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method. (Abstr.) Am Crystallogr Ass, Cambridge/Mass. Annual Meeting Progr 42–43

  • Farmer VC (1974) The infrared spectra of minerals. Mineral Soc Mono 4, pp 377–381

    Google Scholar 

  • Franz G, Morteani G (1981) The system BeO-Al2O3-SiO2-H2O: Hydrothermal investigations of the stability of beryl and euclase in the range from 1 to 6 kb and 400 to 800° C. N Jahrb Mineral Abh 140:273–299

    Google Scholar 

  • Franz G, Morteani G (1984) The formation of chrysoberyl in metamorphosed pegmatites. J Petrol 25:27–52

    Google Scholar 

  • Ganguli D (1972) Crystallization of beryl from solid-solid reactions under atmospheric pressure. N Jahrb Mineral Mh:193–199

    Google Scholar 

  • Goffé B (1980) Magnesiocarpholite, cookeite et euclase dans les niveaux continentaux métamorphiques de la zone briançonnaise. Données minéralogiques et nouvelles occurrences. Bull Minéral 103:297–302

    Google Scholar 

  • Grew ES (1981) Surinamite, taaffeite and beryllian sapphirine from pegmatites in granulite-facies rocks of Casey Bay, Enderby Land, Antarctica. Am Mineral 66:1022–1033

    Google Scholar 

  • Hålenius E (1980) Zur Geochemie und Färbung von blauem Andalusit, Surinamit und Violan. Unpubl Dipl Thesis, Bonn

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    Google Scholar 

  • Hazen RM, Finger LW, Barton M (1983) High-pressure crystal structures and compressibilities of bertrandite, beryl, and euclase. Carnegie Inst Washington Yearb 82:357–359

    Google Scholar 

  • Hensen BJ, Green PH (1971) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures I. Compositions with excess alumino-silicate. Contrib Mineral Petrol 33:304–330

    Google Scholar 

  • Hölscher A, Schreyer W (1985) Mg2Al2BeSi6O18, a new synthetic cordierite and its structural and miscibility relations with Mg-cordierite. (Abstr.) Terra Cognita 5:222

    Google Scholar 

  • Hudson DR, Wilson AF, Threadgold IM (1967) A new polytype of taaffeite — a rare beryllium mineral from the granulites of central Australia. Mineral Mag 36:305–310

    Google Scholar 

  • Hsu LC (1983) Some phase relationships in the system BeO-Al2O3-SiO2-H2O with comments on effects of HF. Mem Geol Soc China 5:33–46

    Google Scholar 

  • Johannes W (1984) Beginning of melting in the granite system Qz-Or-Ab-An-H2O. Contrib Mineral Petrol 86:264–273

    Google Scholar 

  • Lindner B, Rudert V (1969) Eine verbesserte Methode zur Bestimmung des gebundenen Wassers in Gesteinen, Mineralen und anderen Festkörpern. Z Anal Chem 248:21–24

    Google Scholar 

  • Luth WC, Tuttle OF (1963) Externally heated cold-seal pressure vessels for use to 10,000 bars and 750° C. Am Mineral 48:1401–1403

    Google Scholar 

  • Massonne H-J, Mirwald PW, Schreyer W (1981) Experimentelle Überprüfung der Reaktionskurve Chlorit+Quarz=Talk+Disthen im System MgO-Al2O3-SiO2-H2O. (Abstr.) Fortschr Mineral 59, Bh 1:122–123

    Google Scholar 

  • Massonne H-J, Schreyer W (1983) Stability of the talc-kyanite asemblage revisited. (Abstr.) Terra Cognita 3:187

    Google Scholar 

  • Medenbach O, Maresch WV, Mirwald PW, Schreyer W (1980) Variation of refractive index of synthetic Mg-cordierite with H2O content. Am Mineral 65:367–373

    Google Scholar 

  • Mirwald PW, Getting IC, Kennedy GC (1975) Low-friction cell for piston-cylinder high-pressure apparatus. J Geophys Res 80:1519–1525

    Google Scholar 

  • Moor R, Oberholzer WF, Gübelin E (1981) Taprobanite, a new mineral of the taaffeite-group. Schweiz Mineral Petrol Mitt 61:13–21

    Google Scholar 

  • Moore PB (1969) The crystal structure of sapphirine. Am Mineral 54:31–49

    Google Scholar 

  • Moore PB (1976) Surinamite, a new Mg — Al-silicate from the Bakhuis Mountains, Western Surinam. II. X-ray crystallography and proposed crystal structure. Am Mineral 61:197–199

    Google Scholar 

  • Moore PB, Araki T (1983) Surinamite, ca. Mg3Al4Si3BeO16: Its crystal structure and relation to sapphirine, ca. Mg2.8 Al7.2Si1.2O16 AmMineral 68:804–810

    Google Scholar 

  • Newton RC (1966) BeO in pegmatitic cordierite. Mineral Mag 35:920–927

    Google Scholar 

  • Newton RC (1972) An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. J Geol 80:298–420

    Google Scholar 

  • Nuber B, Schmetzer K (1983) Crystal structure of ternary Be-Mg-Al oxides: taaffeite, BeMg3Al8O16, and musgravite, BeMg2Al6O12. N Jahrb Mineral Mh:393–402

  • Povondra P, Langer K (1971) A note on the miscibility of magnesian cordierite and beryl. Mineral Mag 38:523–526

    Google Scholar 

  • Reeve KD, Buykx WJ, Ramm EJ (1969) The system BeO-Al2O3-MgO at subsolidus temperatures. J Aust Ceram Soc 5:29–32

    Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria. The aluminum silicate triple point. Am J Sci 267:259–272

    Google Scholar 

  • Robie RA, Hemingway BS, Fischer JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geological Survey Bulletin 1452

  • de Roever EWF, Kieft C, Murray E, Klein E, Drucker WH (1976) Surinamite, a new Mg-Al-silicate from the Bakhuis Mountains, Western Surinam. I. Description, occurrence and conditions of formation. Am Mineral 61:193–197

    Google Scholar 

  • de Roever EWF, Lattard D, Schreyer W (1981) Surinamite: a beryllium-bearing mineral. Contrib Mineral Petrol 76:472–473

    Google Scholar 

  • de Roever EWF, Vrána S (1985) Surinamite in pseudomorphs after cordierite in polymetamorphic granulites from Zambia. Am Mineral (in press)

  • Sandiford M, Wilson CJL (1983) The geology of the Fyfe Hills-Khmara Bay Region, Enderby Land. In: Oliver RL, James PR, Jago JB (eds) Antarctic Earth Science. Austr Acad Sci, Canberra, pp 16–19

    Google Scholar 

  • Schmetzer K (1983) Crystal chemistry of natural Be-Mg-Al-oxides: taaffeite, taprobanite, musgravite. N Jahrb Mineral Abh 146:15–28

    Google Scholar 

  • Schreyer W (1968) A reconnaissance study of the system MgO-Al2O3-SiO2-H2O at pressures between 10 and 20 kb. Carn Inst Wash Yearb 66:380–392

    Google Scholar 

  • Schreyer W (1970) Metamorphose pelitischer Gesteine im Modell-system MgO-Al2O3-SiO2-H2O. Fortschr Mineral 47:124–165

    Google Scholar 

  • Schreyer W (1976) Experimental metamorphic petrology at low pressures and high temperatures. In: Bailey DK, MacDonald (eds) The evolution of the crystalline rocks. Acad Press, pp 261–330

  • Schreyer W, Seifert F (1969) High-pressure phases in the system MgO-Al2O3-SiO2-H2O. Am J Sci 267A:407–443

    Google Scholar 

  • Schreyer W, Yoder HS Jr (1964) The system Mg-cordierite-H2O and related rocks. N Jahrb Mineral Abh 101:271–342

    Google Scholar 

  • Schreyer W, Yoder HS Jr (1968) Yoderite: synthesis, stability, and interpretation of its natural occurrence. Carnegie Inst Washington Yearb 66:376–380

    Google Scholar 

  • Schreyer W, Baller T, Chopin C (1985) High pressure synthesis of ellenbergerite in the system MgO-Al2O3-SiO2-H2O. (Abstr.) Terra cognita 5:327

    Google Scholar 

  • Seck H, Okrusch M (1972) Phasenbeziehungen und Reaktionen im System BeO-Al2O3-SiO2-H2O. (Abstr.) Fortschr Mineral 50, Bh 1:91–92

    Google Scholar 

  • Seifert F (1974) Stability of sapphirine: A study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. J Geol 82:173–204

    Google Scholar 

  • Seifert F (1975) Boron-free kornerupine: a high pressure phase. Am J Sci 275:57–87

    Google Scholar 

  • Seifert F, Langer K (1971) Arbeitsvorschriften zum Praktikum „Experimentelle Petrologie“. Unpubl Inst f Mineral, Ruhr-Universität Bochum

  • Seifert F, Schreyer W (1970) Lower temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: a redetermination. Contrib Mineral Petrol 27:225–238

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:153pp

    Google Scholar 

  • Woodford PJ, Wilson AF (1976) Sapphirine, högbomite, kornerupine, and surinamite from aluminous granulites, northeastern Strangways Range, Central Australia. N Jahrb Mineral Mh:15–35

  • Yoder HS Jr (1950) High-low quartz inversion up to 10,000 bars. Trans Am Geophys Union 31:827–835

    Google Scholar 

  • Yoder HS Jr (1952) The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies. Am J Sci Bowen Vol:569–627

  • Yvon K, Jeitschko W, Pathé E (1977) LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J Appl Crystallogr 10:73–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at Institut für Kristallographie, Technische Hochschule, Templergraben 55, D-5100 Aachen, FRG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölscher, A., Schreyer, W. & Lattard, D. High-pressure, high-temperature stability of surinamite in the system MgO-BeO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 92, 113–127 (1986). https://doi.org/10.1007/BF00373969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373969

Keywords

Navigation