Skip to main content
Log in

Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures

III. Synthesis of experimental data and geological applications

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet⇄ hypersthene+sillimanite+quartz, cordierite+garnet⇄ hypersthene+sapphirine+quartz, cordierite+garnet⇄ hypersthene+spinel+quartz and cordierite+garnet⇄ olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.

Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite⇄ garnet+sillimanite+quartz and cordierite+hypersthene⇄ garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.

On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, F.: Cordierite-garnet gneiss and associated microcline-rich pegmatite at Sturbridge, Massachusetts and Union, Connecticut. Am. Mineralogist 47, 907–918 (1962).

    Google Scholar 

  • Best, M. G., Weiss, L. E.: Mineralogical relations in some pelitic hornfelses from the southern Sierra Nevada. Am. Mineralogist 49, 1240–1266 (1964).

    Google Scholar 

  • Bryhni, I., Green, D. H., Heier, K. S., Fyfe, W. S.: On the occurrence of eclogite in W. Norway. Contr. Mineral. and Petrol. 26, 12–19 (1970).

    Google Scholar 

  • Chinner, G. A.: Almandine in thermal aureoles. J. Petrol. 3, 316–340 (1962).

    Google Scholar 

  • Dallwitz, W. B.: Coexisting sapphirine and quartz in granulite from Enderby Land, Antarctica. Nature (Lond.) 219, 476–477 (1968).

    Google Scholar 

  • De Waard, D.: The biotite-cordierite-almandine-subfacies of the hornblende-granulite facies. Canad. Mineralogist 8, 481–492 (1966).

    Google Scholar 

  • Eskola, P.: On the granulites of Lapland. Am. J. Sci. Bowen Volume, 133–171 (1952).

  • Evans, B. W.: Application of reaction-rate method to the breakdown equilibria of muscovite+quartz. Am. J. Sci. 263, 647 (1965).

    Google Scholar 

  • Farrel, E. F., Newnham, R. E.: Electronic and vibrational absorption spectra in cordierite. Am. Mineralogist 52, 380–388 (1967).

    Google Scholar 

  • Fonteilles, M., Guitard, G., Raguin, E.: Sur la présence de gneiss à disthène et cordierite dans le massif du Saint Barthélemy, Pyrenées de l'Ariege. Compt. Rend. 258, 3524–3525 (1964).

    Google Scholar 

  • Grant, J. A.: Partial melting of common rocks as a possible source of cordierite-anthophyllite bearing assemblages. Am. J. Sci. 266, 908–931 (1968).

    Google Scholar 

  • Green, D. H., Ringwood, A. E.: An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta 31, 767–833 (1967).

    Google Scholar 

  • Green, T. H.: High pressure experimental studies on the mineralogical constitution of the lower crust. Phys. Earth. Planet. Int. 3, 441–451 (1970).

    Google Scholar 

  • Green, T. H., Ringwood, A. E.: Genesis of the oalcalkaline rock suite. Contr. Mineral. and Petrol. 18, 105–162 (1968a).

    Google Scholar 

  • Green, T. H., Ringwood, A. E.: Origin of garnet phenocrysts in calcalkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968b).

    Google Scholar 

  • Hensen, B. J.: Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contr. Mineral. and Petrol. 33, 191–214 (1971).

    Google Scholar 

  • Hensen, B. J.: Cordierite-garnet equilibrium as a function of pressure, temperature, and ironmagnesium ratio. Carnegie Inst. Washington Year Book 71 (in press).

  • Hensen, B. J., Green, D. H.: Experimental data on coexisting cordierite and garnet under high grade metamorphic conditions. Phys. Earth Planet. Int. 3, 431–440 (1970).

    Google Scholar 

  • Hensen, B. J., Green, D. H.: Experimental study of cordierite and garnet in pelitic compositions at high pressures and temperatures. I. Compositions with excess alumino-silicate. Contr. Mineral. and Petrol. 33, 309–330 (1971).

    Google Scholar 

  • Hensen, B. J., Green, D. H.: Experimental study of cordierite and garnet in pelitic compositions at high pressures and temperatures. II. Compositions without excess aluminosilicate. Contr. Mineral. and Petrol. 35, 331–354 (1972).

    Google Scholar 

  • Hess, P. C.: The metamorphic paragenesis of cordierite in pelitic rocks. Contr. Mineral. and Petrol. 24, 191–207 (1969).

    Google Scholar 

  • Hess, P. C.: Prograde and retrograde equilibria in garnet-cordierite gneisses in South-Central Massachusetts. Contr. Mineral. and Petrol. 30, 177–195 (1971).

    Google Scholar 

  • Hietanen, A.: Kyanite, andalusite and sillimanite in the schist in Boehls Butte quadrangle, Idaho. Am. Mineralogist 41, 1–27 (1956).

    Google Scholar 

  • Hirschberg, A., Winkler, H. G. F.: Stabilitätsbeziehungen zwischen Chlorit, Cordierite und Almandin bei der Metamorphose. Contr. Mineral. and Petrol. 18, 17–42 (1968).

    Google Scholar 

  • Hsu, L. C.: Selected phase relationships in the system Al-Mn-Fe-Si-O-H: A model for garnet equilibria. J. Petrol. 9, 40–83 (1968).

    Google Scholar 

  • Khlestov, V. V.: Garnets from cordierite-bearing rocks of the sharyzhalgya complex (southwestern Transbaikal). Dokl. Akad. Nauk SSSR 154, 4, 842–845 (1964).

    Google Scholar 

  • Luts, B. G., Kopaneva, L. N.: Dokl. Akad. Nauk SSSR 179, 1200 (1968).

    Google Scholar 

  • Marakushev, A. A., Kudryavtsev, V. A.: Hypersthene-sillimanite paragenesis and its petrological implications. Dokl. Akad. Nauk SSSR 164, 1, 179–182 (1965).

    Google Scholar 

  • Morse, S. A., Talley, J. H.: Sapphirine reactions in deep-seated granulites near Wilson Lake, Central Labrador, Canada, 1971.

  • Newton, R. C.: An experimental determination of the high pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol. 80, 398–420 (1972).

    Google Scholar 

  • Okrusch, M.: Die Gneishornfelse um Steinach in der Oberpfalz. Contr. Mineral. and Petrol. 32, 32–72 (1969).

    Google Scholar 

  • Okrusch, M.: Garnet-cordierite-biotite equilibria in the Steinach aureole, Bavaria. Contr. Mineral. and Petrol. 32, 1–23 (1971).

    Google Scholar 

  • Reinhardt, E. W.: Phase relations in cordierite-bearing gneisses from the Gananoque area, Ontario. Can. J. Earth Sci. 5, 455–482 (1968).

    Google Scholar 

  • Richardson, S. W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol. 9, 476–488 (1968).

    Google Scholar 

  • Richardson, S. W., Bell, P. M., Gilbert, M. C.: Kyanite-sillimanite equilibrium between 700° C and 1500° C. Am. J. Sci. 266, 513–541 (1968).

    Google Scholar 

  • Schreyer, W., Schairer, J. F.: Compositions and structural states of anhydrous Mg-cordierites: A reinvestigation of the central part of the system MgO-Al2O3-SiO2. J. Petrol. 2, 3, 324–406 (1961).

    Google Scholar 

  • Schreyer, W., Yoder, H. S., Jr.: Instability of anhydrous Mg-cordierite at high pressures. Carnegie Inst. Washington Year Book 58, 90–91 (1960).

    Google Scholar 

  • Schreyer, W., Yoder, H. S., Jr.: The system Mg-cordierite-H2O and related rocks. Neues Jahrb. Mineral. Abhandl. 101, 271–342 (1964).

    Google Scholar 

  • Platen, H. von, Höller, H.: Experimentelle anatexis des Stainzer Plattengneises von der Koralpe, Steiermark, bei 2, 4, 7 und 10 kb H2O-Druck. Neues Jahrb. Mineral. Abhandl. 106, 1, 106–130 (1966).

    Google Scholar 

  • Wenk, E.: Cordierit in Val Verzasca. Schweiz. Mineral. Petrog. Mitteil. 48, 2, 455–457 (1968).

    Google Scholar 

  • Winkler, H. G. F.: Die Genese der metamorphen Gesteine, 2. Aufl. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Wynne-Edwards, H. R., Hay, P. W.: Coexisting cordierite and garnet in regionally metamorphosed rocks from the Westport area, Ontario. Can. Mineralogist 7, 453–478 (1963).

    Google Scholar 

  • Zeck, H. P.: Anatectic origin and further petrogenesis of almandine bearing biotite-cordieritel-abradorite dacite with many inclusions of restite and basaltoid material, Cerro del Hoyazo, S. E. Spain. University of Amsterdam Ph. D. 1968.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensen, B.J., Green, D.H. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. Contr. Mineral. and Petrol. 38, 151–166 (1973). https://doi.org/10.1007/BF00373879

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373879

Keywords

Navigation