Skip to main content
Log in

The upper stability limit of the assemblage paragonite + quartz and its natural occurrences

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The assemblage paragonite + quartz is encountered frequently in low- to medium-grade metamorphic rocks. With rising grade of metamorphism they react mutually to yield the condensed assemblage albite + Al2SiO5.

The univariant curve pertaining to the equilibrium paragonite + quartz=albite + andalusite + H2O has been located experimentally. The reversed P H 2 O-T data are: 1 kb: 470–490° C 2 kb: 510–530° C 3 kb: 540–560° C 4 kb: 560–580° C 5 kb: 590–600° C The univariant curve pertaining to the equilibrium paragonite + quartz=albite + kyanite + H2O runs through the following P H 2 O-T-intervals: 5 kb: 570–625° C 6 kb: 600–630° C 7 kb: 620–640° C Thermodynamic calculations of S 0298 , Δ H 0 f,298 and Δ G 0 f,298 of the phase paragonite from the experimental data presented above and those obtained from the equilibria of the reaction paragonite=albite + corundum + H2O (Chatterjee, 1970), agree within the limits of uncertainty. This prompts the idea that Zen's (1969) suggestion of a possible error of approximately 7 kcal in Δ G 0 f,298 of the Al2SiO5 polymorphs may in fact be due to an error of similar magnitude in Δ G 0 f,298 of corundum.

A “best estimate” of S 0298 , Δ H 0 f,298 and Δ G 0 f,298 of paragonite based on these considerations yield: S 0298 : 67.61±3.9 cal deg−1 gfw−1 Δ H 0 f,298 : −1411.4±2.7 kcal gfw−1 Δ G 0 f,298 : −1320.9±4.0 kcal gfw−1 These numbers will be subject to change when better thermochemical data on corundum and albite are available.

In medium-grade metamorphic rocks the assemblage paragonite + quartz is commonly found in stable coexistence with such other phases as muscovite, staurolite, andalusite, kyanite, but not with cordierite or sillimanite. However, the assemblage paragonite-sillimanite has been reported to be stable in the absence of quartz. All these petrologic observations can be explained on the basis of the stability data of the phases and phase assemblages concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althaus, E., Karotke, E., Nitsch, K. H., Winkler, H. G. F.: An experimental Re-examination of the upper stability limit of musoovite plus quartz. Neues Jahrb. Mineral., Monatsh. 1970, 325–336.

  • Bannister, F. A.: Brammalite (Sodium illite), a new mineral from Llandebie, South Wales. Mineral. Mag. 26, 304–307 (1943).

    Google Scholar 

  • Burnham, C. Wayne, Holloway, J. R., Davis, N. F.: Thermodynamic properties of water to 1000° C and 10,000 bars. Geol. Soc. Am., Spec. Papers 132, 96 p. (1969).

  • Chatterjee, N. D.: Zur Achsenkarte des inneren Westalpenbogens. II. Petrographische Auswertung des Probenmaterials. Neues Jahrb. Geol. Palaeontol., Monatsh. 1962, 587–606.

  • Chatterjee, N. D.: Synthesis and upper stability of paragonite. Contr. Mineral. and Petrol. 27, 244–257 (1970).

    Google Scholar 

  • Chatterjee, N. D.: Phase equilibria in the alpine metamorphic rocks of the environs of the Dora-Maira-Massif, Western Italian Alps. Parts I and II. Neues Jahrb. Mineral., Abhandl. 114, 181–245 (1971a).

    Google Scholar 

  • Chatterjee, N. D.: Preliminary results of the synthesis and upper stability limit of margarite. Naturwissenschaften 58, 147 (1971b).

    Google Scholar 

  • Dietrich, V.: Die Ophiolithe des Oberhalbsteins (Graubünden) und das Ophiolithmaterial der ostsohweizerischen Molasseablagerungen, ein petrographischer Vergleich. Europ. Hochschulschr., Reihe XVII, 1, 179 p., Bern 1969.

  • Eugster, H. P., Yoder, H. S.: Paragonite. Carnegie Inst. Washington Yearbook 53, 111–114 (1954).

    Google Scholar 

  • Eugster, H. P., Yoder, H. S.: Paragonite. Carnegie Inst. Washington Yearbook 54, 124–126 (1955).

    Google Scholar 

  • Evans, B. W.: Application of a reaction-rate method to the breakdown equilibria of muscovite and muscovite plus quartz. Am. J. Sci. 263, 647–667 (1965).

    Google Scholar 

  • Evans, H. T., Appleman, D. E., Handwerker, D. S.: The least squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method (Abstract). Amer. Crystallogr. Assoc., Cambridge, Mass., Annual Meeting Program p. 42–43 (1963).

  • Fisher, J. R., Zen, E-an: Thermochemical calculations from hydrothermal phase equilibrium data and the free energy of H2O. Am. J. Sci. 270, 297–314 (1971).

    Google Scholar 

  • Frey, M.: Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet. Beitr. Geol. Karte Schweiz 137, 160 p. (1969).

  • Ghent, E. D., Jones, J. W., Nicholls, J.: A note on the significance of the assemblage calcitequartz-plagioclase-paragonite-graphite. Contr. Mineral. and Petrol. 28, 112–116 (1970).

    Google Scholar 

  • Good, W. D.: The heat of formation of silica. J. Phys. Chem. 66, 380–381 (1962).

    Google Scholar 

  • Guidotti, C. V.: On the relative scarcity of paragonite. Am. Mineralogist 53, 963–974 (1968).

    Google Scholar 

  • Harder, H.: Untersuchungen an Paragoniten und an natriumhaltigen Muskoviten. Heidelberger Beitr. Mineral. Petrog. 5, 227–271 (1956).

    Google Scholar 

  • Holdaway, M. J.: Stability of andalusite and the aluminium silicate phase diagram. Am. J. Sci. 271, 97–131 (1971).

    Google Scholar 

  • Holm, J. L., Kleppa, O. J.: The thermodynamic properties of aluminium silicates. Am. Mineralogist 51, 1608–1622 (1966).

    Google Scholar 

  • Hoschek, G.: The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contr. Mineral. and Petrol. 22, 208–232 (1969).

    Google Scholar 

  • Ivanov, I. P., Gusynin, V. F.: Stability of paragonite in the system SiO2-NaAlSi3O8-Al2O3-H2O. Geochem. International 7, 578–587 (1970).

    Google Scholar 

  • Liborio, G., Mottana, A., Pasquare, G., Rossi, P. M.: Paragonite come componente essenziale dei calcescisti nel Gruppo di Voltri. Rend. Soc. Italiana Miner. Petr. Petrol. 26, 669–685 (1970).

    Google Scholar 

  • Martin, R. F.: The hydrothermal synthesis of low albite. Contr. Mineral. and Petrol. 23, 323–339 (1969).

    Google Scholar 

  • Martin, R. F.: Cell parameters and infrared absorption of synthetic high to low albite. Contr. Mineral. and Petrol. 26, 62–74 (1970).

    Google Scholar 

  • Nijhuis, H. J.: Plurifacial alpine metamorphism in the Southeastern Sierre de Los Filabres South of Lubrin, S. E. Spain. Diss. Amsterdam, 151 p. (1964).

  • Raase, P.: Zur Synthese und Stabilität der Albit-Modifikationen. Tschermaks Mineral. Petrog. Mitt. 16, 136–155 (1971).

    Google Scholar 

  • Richardson, S. W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol. 9, 467–488 (1968).

    Google Scholar 

  • Richardson, S. W., Bell, P. M., Gilbert, M. C.: Kyanite-sillimanite equilibrium between 700° C and 1500° C. Am. J. Sci. 266, 513–541 (1968).

    Google Scholar 

  • Richardson, S. W., Gilbert, M. C., Bell, P. M.: Experimental determination of KyaniteAndalusite and Andalusite-Sillimanite Equilibria; the aluminium silicate triple point. Am. J. Sci. 267, 259–272 (1969).

    Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 298.15° K (25° C) and one atmosphere (1.013 Bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, 256 p. (1968).

  • Rosenfeld, J. L.: The contamination-reaction rules. Am. J. Sci. 259, 1–23 (1961)

    Google Scholar 

  • Sand, L. B., Roy, R., Osborn, E.F.: Stability relations of some minerals in the Na20-Al2O3-SiO2-H2O system. Econ. Geol. 52, 169–179 (1957).

    Google Scholar 

  • Seifert, F.: Low-temperature compatibility relations of cordierite in haplopelites of the system K2O-MgO-Al2O3-SiO2-H2O. J. Petrol. 11, 73–99 (1970).

    Google Scholar 

  • Seifert, F., Schreyer, W.: Low temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: A redetermination. Contr. Mineral. and Petrol. 27, 225–238 (1970).

    Google Scholar 

  • Stewart, D. B., Ribbe, P. H.: Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am. J. Sci. 267-A, 444–462 (1969).

    Google Scholar 

  • Waldbaum, D. R.: High temperature thermodynamic properties of alkali feldspars. Contr. Mineral. and Petrol. 17, 71–77 (1968).

    Google Scholar 

  • Warner, J., Al-Mishwt, A.: Variation of the basal spacing of muscovite with metamorphic grade in Southeastern Pennsylvania. Proc. Penn. Acad. Sci. 42, 193–202 (1968).

    Google Scholar 

  • Wise, S. S., Margrave, J. L., Feder, H. M., Hubbard, W. N.: Fluorine bomb calorimetry. V. The heats of formation of silicon tetrafluoride and silica. J. Phys. Chem. 67, 815–821 (1963).

    Google Scholar 

  • Zen, E-an: Free energy of formation of pyrophyllite from hydrothermal data: values, discrepancies and implications. Am. Mineralogist 54, 1592–1606 (1969).

    Google Scholar 

  • Zen, E-an: Gibbs free energy, enthalpy and entropy of ten rook-forming minerals. Am. Mineralogist 57 (1972) (in Press).

  • Zen, E-an, Albee, A. L.: Coexistent muscovite and paragonite in pelitic schists. Am. Mineralogist 49, 904–925 (1964).

    Google Scholar 

  • Zen, E-an, Ross, M., Bearth, P.: Paragonite from Täsch Valley near Zermatt, Switzerland. Am. Mineralogist 49, 904–925 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N.D. The upper stability limit of the assemblage paragonite + quartz and its natural occurrences. Contr. Mineral. and Petrol. 34, 288–303 (1972). https://doi.org/10.1007/BF00373759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373759

Keywords

Navigation