Skip to main content
Log in

Transient responses of hybridoma metabolism to changes in the oxygen supply rate in continuous culture

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Oxygen is an important nutrient that may limit the productivity of commercial cell culture reactors. The transient responses of hybridoma growth and metabolism to step changes in the oxygen supply rate have been examined for dissolved oxygen concentrations (DO) ranging from 0.1% to 10% of air saturation in continuous culture. Metabolic quotients are reported for glucose, lactate, ammonia, oxygen, glutamine, alanine and other amino acids. A majority of the estimated ATP production was due to oxidative phosphorylation under all conditions tested. Decreases in the oxygen supply rate below the value required to maintain 0.5% DO caused the viable cell concentration to decrease. Glycolysis was enhanced at the lower oxygen concentrations, and after an initial decrease, the specific glutamine consumption rate was also higher. High residual glutamine concentrations occurred below 0.5% DO. Oxidation of other amino acids and production of serine were also inhibited. The cells subsequently adapted to low oxygen concentrations. The increase in cell concentration following the return to 10% DO was preceded by increased biosynthetic activity, as evidenced by transiently reduced yields of lactate from glucose, and alanine and ammonia from glutamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(C_{{\text{O}}_2 } \) mM:

oxygen concentration

\(C_{_{{\text{O}}_2 } }^ * \) mM:

oxygen concentration in equilibrium with the headspace gas

D d−1 :

dilution rate = (volumetric feed rate)/(reactor volume)

f glycolysis mol/mol:

glycolysis correction factor = (glycolytic q ATP)/qlac

K L a h−1 :

volumetric mass transfer coefficient

n cells/cm3 :

total cell count

n v cells/cm3 :

viable cell count

p mM:

product concentration

p ATP mM cell−1 d−1 :

specific ATP production rate

\(Q_{{\text{O}}_2 } \) Mol/(m2 · h):

volumetric oxygen uptake rate

q g mM cell−1 d−1 :

specific glutamine consumption rate

\(q_{{\text{O}}_2 } \) mM cell−1 h−1 :

specific oxygen uptake rate

q p mM cell−1 d−1 :

specific production formation rate

q s mM cell−1 d−1 :

specific substrate consumption rate

P/O :

molecules of ATP generated per molecule of NADH oxidized

s mM:

substrate concentration

t d:

time

Y′ NADH, gln Mol/Mol:

mols of NADH (plus FADH2) oxidized per mol glutamine consumed

Y p,s Mol/Mol:

yield of product from substrate

Y′ p,s Mol/Mol:

apparent yield of product from sub strate = q p /p s

μ d−1 :

true specific growth rate

μ app d−1 :

apparent specific growth rate

ala:

alanine

NH3 :

ammonia

F :

feed stream

gluc:

glucose

glu:

glutamate

gln:

glutamine

lac:

lactate

NADH:

NADH plus FADH2

References

  1. Morgan, M. J.; Faik, P.: The utilization of carbohydrates by animal cells. In: Morgan, M. J. (Ed.): Carbohydrate metabolism in cultured cells, pp. 29–75. New York: Plenum Press 1986

    Google Scholar 

  2. Zielke, H. R.; Sumbilla, C. M.; Zielke, C. L.; Tildon, J. T.; Ozand, P. T.: Glutamine metabolism by cultured mammalian cells. In: Häussinger, D.; Sies, H. (Eds.): Glutamine metabolism in mammalian tissues, pp. 247–254. New York, Berlin, Heidelberg: Springer 1984

    Google Scholar 

  3. Miller, W. M.; Blanch, H. W.; Wilke, C. R.: A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate and pH. Biotechnol. Bioeng. (in press) 1987

  4. Wice, B. M.; Reitzer, L. J.; Kennel, D.: The continuous growth of vertebrate cells in the absence of sugar. J. Biol. Chem. 256 (1981) 7812–7819

    Google Scholar 

  5. Raivio, K. O.; Seegmiller, J. E.: Role of glutamine in purine synthesis and in guanine nucleotide formation in normal fibroblasts and in fibroblasts deficient in hypoxanthine phosphoribosyltrans-ferase activity. Biochim. Biophys. Acta 299 (1973) 283–292

    Google Scholar 

  6. Renner, E. D.; Plagemann, P. G. W.; Bernlohr, R. W.: Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship of glucose metabolism. J. Biol. Chem. 247 (1972) 5765–5776

    Google Scholar 

  7. Zielke, H. R.; Sumbilla, C. M.; Sevdalian, D. A.; Hawkins, R. L.; Ozand, P. T.: Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J. Cell. Physiol. 104 (1980) 433–441

    Google Scholar 

  8. Eigenbrodt, E.; Fister, P.; Reinacher, M.: New perspectives on carbohydrate metabolism in tumor cells. In: Beitner, R. (Ed.): Regulation of carbohydrate metabolism, vol. 2, pp. 141–179. Boca Raton, FL: CRC Press 1985

    Google Scholar 

  9. McKeehan, W. L.: Glutaminolysis in animal cells. In: Morgan, M. J. (Ed.): Carbohydrate metabolism in cultured cells, pp. 111–150. New York: Plenum Press 1986

    Google Scholar 

  10. Fleischaker, R. J.; Sinskey, A. J.: Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotechnol. 12 (1981) 193–197

    Google Scholar 

  11. McLimans, W. F.; Blumenson, L. E.; Tunnah, K. V.: Kinetics of gas diffusion in mammalian cell culture systems. II. Theory. Biotechnol. Bioeng. 10 (1968) 741–763

    Google Scholar 

  12. Miller, W. M.; Wilke, C. R.; Blanch, H. W.: The effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. J. Cell. Physiol. in press 1987

  13. Balin, A. K.; Goodman, D. B. P.; Rasmussen, H.; Cristofalo, V. J.: The effect of oxygen tension on the growth and metabolism of WI-38 cells. J. Cell. Physiol. 89 (1976) 235–250

    Google Scholar 

  14. Kilburn, D. G.; Lilly, M. D.; Self, D. A.; Webb, F. C.: The effect of dissolved oxygen partial pressure on the growth and carbohydrate metabolism of mouse LS cells. J. Cell Sci. 4 (1969) 25–37

    Google Scholar 

  15. Miller, W. M.; Blanch, H. W.; Wilke, C. R.: Kinetic analysis of hybridoma growth in continuous suspension culture. Presented at the ACS National Meeting, Anaheim, CA, September 11, 1986

  16. Frame, K. K.; Hu, W.-S.: Oxygen uptake of mammalian cells in microcarrier culture-response to changes in glucose concentration. Biotechnol. Lett. 7 (1985) 147–152

    Google Scholar 

  17. Boraston, R.; Thompson, P. W.; Garland, S.; Birch, J. R.: Growth and oxygen requirements of antibody-producing mouse hybridoma cells in suspension culture. Dev. Biol. Stand. 55 (1984) 103–111

    Google Scholar 

  18. Self, D. A.; Kilburn, D. G.; Lilly, M. D.: The influence of dissolved oxygen partial pressure on the level of various enzymes in mouse LS cells. Biotechnol. Bioeng. 10 (1986) 815–828

    Google Scholar 

  19. Brosemer, R. W.; Rutter, W. J.: The effect of oxygen tension on the growth and metabolism of a mammalian cell. Exp. Cell Res. 25 (1961) 101–113

    Google Scholar 

  20. Hornbeck, P. V.; Lewis, G. K.: Idiotype connectance in the immune system II. a heavy chain variable region idiotype that dominates the antibody response to the p-azobenzenearsonate group is a minor idiotype in the response to trinitrophenyl group. J. Exp. Med. 161 (1985) 53–71

    Google Scholar 

  21. Miller, W. M.; Lin, A. A.; Wilke, C. R.; Blanch, H. W.: Polymer biocompatibility — effect on hybridoma growth and metabolism. Biotechnol. Lett. 8 (1986) 463–468

    Google Scholar 

  22. Miller, W. M.; Ph.D. thesis. Berkeley, CA: University of California 1987

    Google Scholar 

  23. Benson, B. B.; Krause, D. Jr.: Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. Phys. 64 (1976) 689–709

    Google Scholar 

  24. Schumpe, A.; Quicker, G.; Deckwer, W.-D.: Gas solubilities in microbial culture media. Adv. Biochem. Eng. 24 (1982) 1–38

    Google Scholar 

  25. Schmid, G.: Personal communication. Berkeley, CA: University of California 1987

  26. Anon: Liquid media instructions for supplementing. In: Sigma catalog, pp. 1332–1335. St. Louis: Sigma Chemical Co. 1987

  27. Seaver, S. S.; Rudolph, J. L.; Gabriels, J. E., Jr.: A rapid HPLC technique for monitoring amino acid utilization in cell culture. BioTechniques 2 (1982) 254–260

    Google Scholar 

  28. Glacken, M. W.; Fleischacker, R. J.; Sinskey, A. J.: Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28 (1986) 1376–1389

    Google Scholar 

  29. Kilburn, D. G.; Lilly, M. D.; Webb, F. C.: The energetics of mammalian cell growth. J. Cell Sci. 4 (1969) 645–654

    Google Scholar 

  30. Nakashima, R. A.; Paggi, M. G.; Pedersen, P. L.: Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D heptoma cells. Cancer Res. 44 (1984) 5702–5706

    Google Scholar 

  31. Packer, L.; Fuher, K.: Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature (London) 267 (1977) 423–425

    Google Scholar 

  32. Donnelly, M.; Scheffler, I. E.: Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J. Cell. Physiol. 89 (1976) 39–51

    Google Scholar 

  33. Lazo, P. A.: Amino acids and glucose utilization by different metabolic pathways in ascites tumor cells. Eur. J. Biochem. 117 (1981) 19–25

    Google Scholar 

  34. Pedersen, P. L.: Tumor mitochrondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22 (1978) 190–274

    Google Scholar 

  35. Reitzer, L. J.; Wice, B. M.; Kennell, D.: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254 (1979) 2669–2676

    Google Scholar 

  36. Miller, W. M.; Wilke, C. R.; Blanch, H. W.: The transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose and pulse and step changes. Submitted to Biotechnol. Bioeng. 1987

  37. Miller, W. M.; Wilke, C. R.; Blanch, H. W.: The transient responses of hybridoma cells to nutrient additions in continuous culture: II. Glutamine pulse and step changes. Submitted to Biotechnol. Bioeng. 1987

  38. Paul, J.: Carbohydrate and energy metabolism. In: Wilmer, E. N. (Ed.): Cells and tissues in culture, pp. 239–276. New York: Academic Press 1965

    Google Scholar 

  39. Buchanan, J. M.: The amidotransferases. Adv. Enzymol. Relat. Areas Mol. Biol. 39 (1973) 91–183

    Google Scholar 

  40. Roberts, R. S.; Hsu, H. W.; Lin, K. D.; Yang, T. J.: Amino acid metabolism of myeloma cells in culture. J. Cell Sci. 21 (1976) 609–615

    Google Scholar 

  41. Thilly, W. G.; Bamgrover, D.; Thomas, J. N.: Microcarriers and the problem of high density cell culture. In: Schultz, A. F.; Smith, E. E.; Whelan, W. J. (Eds.): From gene to protein: translation into biotechnology, pp. 75–103. New York: Academic Press 1982

    Google Scholar 

  42. Stoner, G. D.; Merchant, D. J.: Amino acid utilization by L-M strain mouse cells in a chemically defined medium. In Vitro 7 (1972) 330–343

    Google Scholar 

  43. Griffiths, J. B.; Pirt, S. J.: The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture: the influence of cell growth rate. Proc. R. Soc. London B 168 (1967) 421–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, W.M., Wilke, C.R. & Blanch, H.W. Transient responses of hybridoma metabolism to changes in the oxygen supply rate in continuous culture. Bioprocess Engineering 3, 103–111 (1988). https://doi.org/10.1007/BF00373473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373473

Keywords

Navigation